|
@@ -0,0 +1,491 @@
|
|
|
+// This file is part of libigl, a simple c++ geometry processing library.
|
|
|
+//
|
|
|
+// Copyright (C) 2014 Olga Diamanti <olga.diam@gmail.com>
|
|
|
+//
|
|
|
+// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
|
+// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
|
+// obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
+
|
|
|
+#include <igl/n_polyvector_general.h>
|
|
|
+#include <igl/edge_topology.h>
|
|
|
+#include <igl/local_basis.h>
|
|
|
+#include <igl/nchoosek.h>
|
|
|
+#include <igl/slice.h>
|
|
|
+#include <igl/polyroots.h>
|
|
|
+#include <Eigen/Sparse>
|
|
|
+
|
|
|
+#include <iostream>
|
|
|
+
|
|
|
+namespace igl {
|
|
|
+ template <typename DerivedV, typename DerivedF>
|
|
|
+ class GeneralPolyVectorFieldFinder
|
|
|
+ {
|
|
|
+ private:
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> &V;
|
|
|
+ const Eigen::PlainObjectBase<DerivedF> &F; int numF;
|
|
|
+ const int n;
|
|
|
+
|
|
|
+ Eigen::MatrixXi EV; int numE;
|
|
|
+ Eigen::MatrixXi F2E;
|
|
|
+ Eigen::MatrixXi E2F;
|
|
|
+ Eigen::VectorXd K;
|
|
|
+
|
|
|
+ Eigen::VectorXi isBorderEdge;
|
|
|
+ int numInteriorEdges;
|
|
|
+ Eigen::Matrix<int,Eigen::Dynamic,2> E2F_int;
|
|
|
+ Eigen::VectorXi indInteriorToFull;
|
|
|
+ Eigen::VectorXi indFullToInterior;
|
|
|
+
|
|
|
+ Eigen::PlainObjectBase<DerivedV> B1, B2, FN;
|
|
|
+
|
|
|
+ IGL_INLINE void computek();
|
|
|
+ IGL_INLINE void setFieldFromGeneralCoefficients(const std::vector<Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1>> &coeffs,
|
|
|
+ std::vector<Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 2> > &pv);
|
|
|
+ IGL_INLINE void computeCoefficientLaplacian(int n, Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > &D);
|
|
|
+ IGL_INLINE void getGeneralCoeffConstraints(const Eigen::VectorXi &isConstrained,
|
|
|
+ const Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, Eigen::Dynamic> &cfW,
|
|
|
+ int k,
|
|
|
+ const Eigen::VectorXi &rootsIndex,
|
|
|
+ Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1> &Ck);
|
|
|
+ IGL_INLINE void precomputeInteriorEdges();
|
|
|
+
|
|
|
+
|
|
|
+ IGL_INLINE void minQuadWithKnownMini(const Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > &Q,
|
|
|
+ const Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > &f,
|
|
|
+ const Eigen::VectorXi isConstrained,
|
|
|
+ const Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic, 1> &xknown,
|
|
|
+ Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic, 1> &x);
|
|
|
+
|
|
|
+ public:
|
|
|
+ IGL_INLINE GeneralPolyVectorFieldFinder(const Eigen::PlainObjectBase<DerivedV> &_V,
|
|
|
+ const Eigen::PlainObjectBase<DerivedF> &_F,
|
|
|
+ const int &_n);
|
|
|
+ IGL_INLINE bool solve(const Eigen::VectorXi &isConstrained,
|
|
|
+ const Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, Eigen::Dynamic> &cfW,
|
|
|
+ const Eigen::VectorXi &rootsIndex,
|
|
|
+ Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, Eigen::Dynamic> &output);
|
|
|
+
|
|
|
+ };
|
|
|
+}
|
|
|
+
|
|
|
+template<typename DerivedV, typename DerivedF>
|
|
|
+IGL_INLINE igl::GeneralPolyVectorFieldFinder<DerivedV, DerivedF>::
|
|
|
+ GeneralPolyVectorFieldFinder(const Eigen::PlainObjectBase<DerivedV> &_V,
|
|
|
+ const Eigen::PlainObjectBase<DerivedF> &_F,
|
|
|
+ const int &_n):
|
|
|
+V(_V),
|
|
|
+F(_F),
|
|
|
+numF(_F.rows()),
|
|
|
+n(_n)
|
|
|
+{
|
|
|
+
|
|
|
+ igl::edge_topology(V,F,EV,F2E,E2F);
|
|
|
+ numE = EV.rows();
|
|
|
+
|
|
|
+
|
|
|
+ precomputeInteriorEdges();
|
|
|
+
|
|
|
+ igl::local_basis(V,F,B1,B2,FN);
|
|
|
+
|
|
|
+ computek();
|
|
|
+
|
|
|
+};
|
|
|
+
|
|
|
+
|
|
|
+template<typename DerivedV, typename DerivedF>
|
|
|
+IGL_INLINE void igl::GeneralPolyVectorFieldFinder<DerivedV, DerivedF>::
|
|
|
+precomputeInteriorEdges()
|
|
|
+{
|
|
|
+ // Flag border edges
|
|
|
+ numInteriorEdges = 0;
|
|
|
+ isBorderEdge.setZero(numE,1);
|
|
|
+ indFullToInterior = -1.*Eigen::VectorXi::Ones(numE,1);
|
|
|
+
|
|
|
+ for(unsigned i=0; i<numE; ++i)
|
|
|
+ {
|
|
|
+ if ((E2F(i,0) == -1) || ((E2F(i,1) == -1)))
|
|
|
+ isBorderEdge[i] = 1;
|
|
|
+ else
|
|
|
+ {
|
|
|
+ indFullToInterior[i] = numInteriorEdges;
|
|
|
+ numInteriorEdges++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ E2F_int.resize(numInteriorEdges, 2);
|
|
|
+ indInteriorToFull.setZero(numInteriorEdges,1);
|
|
|
+ int ii = 0;
|
|
|
+ for (int k=0; k<numE; ++k)
|
|
|
+ {
|
|
|
+ if (isBorderEdge[k])
|
|
|
+ continue;
|
|
|
+ E2F_int.row(ii) = E2F.row(k);
|
|
|
+ indInteriorToFull[ii] = k;
|
|
|
+ ii++;
|
|
|
+ }
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+template<typename DerivedV, typename DerivedF>
|
|
|
+IGL_INLINE void igl::GeneralPolyVectorFieldFinder<DerivedV, DerivedF>::
|
|
|
+minQuadWithKnownMini(const Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > &Q,
|
|
|
+ const Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > &f,
|
|
|
+ const Eigen::VectorXi isConstrained,
|
|
|
+ const Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic, 1> &xknown,
|
|
|
+ Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic, 1> &x)
|
|
|
+{
|
|
|
+ int N = Q.rows();
|
|
|
+
|
|
|
+ int nc = xknown.rows();
|
|
|
+ Eigen::VectorXi known; known.setZero(nc,1);
|
|
|
+ Eigen::VectorXi unknown; unknown.setZero(N-nc,1);
|
|
|
+
|
|
|
+ int indk = 0, indu = 0;
|
|
|
+ for (int i = 0; i<N; ++i)
|
|
|
+ if (isConstrained[i])
|
|
|
+ {
|
|
|
+ known[indk] = i;
|
|
|
+ indk++;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ unknown[indu] = i;
|
|
|
+ indu++;
|
|
|
+ }
|
|
|
+
|
|
|
+ Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar>> Quu, Quk;
|
|
|
+
|
|
|
+ igl::slice(Q,unknown, unknown, Quu);
|
|
|
+ igl::slice(Q,unknown, known, Quk);
|
|
|
+
|
|
|
+
|
|
|
+ std::vector<typename Eigen::Triplet<std::complex<typename DerivedV::Scalar> > > tripletList;
|
|
|
+
|
|
|
+ Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > fu(N-nc,1);
|
|
|
+
|
|
|
+ igl::slice(f,unknown, Eigen::VectorXi::Zero(1,1), fu);
|
|
|
+
|
|
|
+ Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > rhs = (Quk*xknown).sparseView()+.5*fu;
|
|
|
+
|
|
|
+ Eigen::SparseLU< Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar>>> solver;
|
|
|
+ solver.compute(-Quu);
|
|
|
+ if(solver.info()!=Eigen::Success)
|
|
|
+ {
|
|
|
+ std::cerr<<"Decomposition failed!"<<std::endl;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar>> b = solver.solve(rhs);
|
|
|
+ if(solver.info()!=Eigen::Success)
|
|
|
+ {
|
|
|
+ std::cerr<<"Solving failed!"<<std::endl;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ indk = 0, indu = 0;
|
|
|
+ x.setZero(N,1);
|
|
|
+ for (int i = 0; i<N; ++i)
|
|
|
+ if (isConstrained[i])
|
|
|
+ x[i] = xknown[indk++];
|
|
|
+ else
|
|
|
+ x[i] = b.coeff(indu++,0);
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+template<typename DerivedV, typename DerivedF>
|
|
|
+IGL_INLINE bool igl::GeneralPolyVectorFieldFinder<DerivedV, DerivedF>::
|
|
|
+ solve(const Eigen::VectorXi &isConstrained,
|
|
|
+ const Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, Eigen::Dynamic> &cfW,
|
|
|
+ const Eigen::VectorXi &rootsIndex,
|
|
|
+ Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, Eigen::Dynamic> &output)
|
|
|
+{
|
|
|
+
|
|
|
+ // polynomial is of the form:
|
|
|
+ // z^(2n) +
|
|
|
+ // -c[0]z^(2n-1) +
|
|
|
+ // c[1]z^(2n-2) +
|
|
|
+ // -c[2]z^(2n-3) +
|
|
|
+ // ... +
|
|
|
+ // (-1)^n c[n-1]
|
|
|
+
|
|
|
+ std::vector<Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1>> coeffs(n,Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1>::Zero(numF, 1));
|
|
|
+
|
|
|
+ for (int i =0; i<n; ++i)
|
|
|
+ {
|
|
|
+ int degree = i+1;
|
|
|
+
|
|
|
+ Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1> Ck;
|
|
|
+ getGeneralCoeffConstraints(isConstrained,
|
|
|
+ cfW,
|
|
|
+ i,
|
|
|
+ rootsIndex,
|
|
|
+ Ck);
|
|
|
+
|
|
|
+ Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > DD;
|
|
|
+ computeCoefficientLaplacian(degree, DD);
|
|
|
+ Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > f; f.resize(numF,1);
|
|
|
+
|
|
|
+ minQuadWithKnownMini(DD, f, isConstrained, Ck, coeffs[i]);
|
|
|
+ }
|
|
|
+
|
|
|
+ std::vector<Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 2> > pv;
|
|
|
+ setFieldFromGeneralCoefficients(coeffs, pv);
|
|
|
+
|
|
|
+ output.setZero(numF,3*n);
|
|
|
+ for (int fi=0; fi<numF; ++fi)
|
|
|
+ {
|
|
|
+ const Eigen::Matrix<typename DerivedV::Scalar, 1, 3> &b1 = B1.row(fi);
|
|
|
+ const Eigen::Matrix<typename DerivedV::Scalar, 1, 3> &b2 = B2.row(fi);
|
|
|
+ for (int i=0; i<n; ++i)
|
|
|
+ output.block(fi,3*i, 1, 3) = pv[i](fi,0)*b1 + pv[i](fi,1)*b2;
|
|
|
+ }
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+template<typename DerivedV, typename DerivedF>
|
|
|
+IGL_INLINE void igl::GeneralPolyVectorFieldFinder<DerivedV, DerivedF>::setFieldFromGeneralCoefficients(const std::vector<Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1>> &coeffs,
|
|
|
+ std::vector<Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 2>> &pv)
|
|
|
+{
|
|
|
+ pv.assign(n, Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 2>::Zero(numF, 2));
|
|
|
+ for (int i = 0; i <numF; ++i)
|
|
|
+ {
|
|
|
+
|
|
|
+ // poly coefficients: 1, 0, -Acoeff, 0, Bcoeff
|
|
|
+ // matlab code from roots (given there are no trailing zeros in the polynomial coefficients)
|
|
|
+ Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1> polyCoeff;
|
|
|
+ polyCoeff.setZero(n+1,1);
|
|
|
+ polyCoeff[0] = 1.;
|
|
|
+ int sign = 1;
|
|
|
+ for (int k =0; k<n; ++k)
|
|
|
+ {
|
|
|
+ sign = -sign;
|
|
|
+ int degree = k+1;
|
|
|
+ polyCoeff[degree] = (1.*sign)*coeffs[k](i);
|
|
|
+ }
|
|
|
+
|
|
|
+ Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1> roots;
|
|
|
+ igl::polyRoots<std::complex<typename DerivedV::Scalar>, typename DerivedV::Scalar >(polyCoeff,roots);
|
|
|
+ for (int k=0; k<n; ++k)
|
|
|
+ {
|
|
|
+ pv[k](i,0) = real(roots[k]);
|
|
|
+ pv[k](i,1) = imag(roots[k]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+template<typename DerivedV, typename DerivedF>
|
|
|
+IGL_INLINE void igl::GeneralPolyVectorFieldFinder<DerivedV, DerivedF>::computeCoefficientLaplacian(int n, Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > &D)
|
|
|
+{
|
|
|
+ std::vector<Eigen::Triplet<std::complex<typename DerivedV::Scalar> >> tripletList;
|
|
|
+
|
|
|
+ // For every non-border edge
|
|
|
+ for (unsigned eid=0; eid<numE; ++eid)
|
|
|
+ {
|
|
|
+ if (!isBorderEdge[eid])
|
|
|
+ {
|
|
|
+ int fid0 = E2F(eid,0);
|
|
|
+ int fid1 = E2F(eid,1);
|
|
|
+
|
|
|
+ tripletList.push_back(Eigen::Triplet<std::complex<typename DerivedV::Scalar> >(fid0,
|
|
|
+ fid0,
|
|
|
+ std::complex<typename DerivedV::Scalar>(1.)));
|
|
|
+ tripletList.push_back(Eigen::Triplet<std::complex<typename DerivedV::Scalar> >(fid1,
|
|
|
+ fid1,
|
|
|
+ std::complex<typename DerivedV::Scalar>(1.)));
|
|
|
+ tripletList.push_back(Eigen::Triplet<std::complex<typename DerivedV::Scalar> >(fid0,
|
|
|
+ fid1,
|
|
|
+ -1.*std::polar(1.,-1.*n*K[eid])));
|
|
|
+ tripletList.push_back(Eigen::Triplet<std::complex<typename DerivedV::Scalar> >(fid1,
|
|
|
+ fid0,
|
|
|
+ -1.*std::polar(1.,1.*n*K[eid])));
|
|
|
+
|
|
|
+ }
|
|
|
+ }
|
|
|
+ D.resize(numF,numF);
|
|
|
+ D.setFromTriplets(tripletList.begin(), tripletList.end());
|
|
|
+
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+//this gives the coefficients without the (-1)^k that multiplies them
|
|
|
+template<typename DerivedV, typename DerivedF>
|
|
|
+IGL_INLINE void igl::GeneralPolyVectorFieldFinder<DerivedV, DerivedF>::getGeneralCoeffConstraints(const Eigen::VectorXi &isConstrained,
|
|
|
+ const Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, Eigen::Dynamic> &cfW,
|
|
|
+ int k,
|
|
|
+ const Eigen::VectorXi &rootsIndex,
|
|
|
+ Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1> &Ck)
|
|
|
+{
|
|
|
+ int numConstrained = isConstrained.sum();
|
|
|
+ Ck.resize(numConstrained,1);
|
|
|
+ // int n = rootsIndex.cols();
|
|
|
+
|
|
|
+ std::vector<std::vector<int>> allCombs;
|
|
|
+ igl::nchoosek(0,k+1,n,allCombs);
|
|
|
+
|
|
|
+ int ind = 0;
|
|
|
+ for (int fi = 0; fi <numF; ++fi)
|
|
|
+ {
|
|
|
+ const Eigen::Matrix<typename DerivedV::Scalar, 1, 3> &b1 = B1.row(fi);
|
|
|
+ const Eigen::Matrix<typename DerivedV::Scalar, 1, 3> &b2 = B2.row(fi);
|
|
|
+ if(isConstrained[fi])
|
|
|
+ {
|
|
|
+ std::complex<typename DerivedV::Scalar> ck(0);
|
|
|
+
|
|
|
+ for (int j = 0; j < allCombs.size(); ++j)
|
|
|
+ {
|
|
|
+ std::complex<typename DerivedV::Scalar> tk(1.);
|
|
|
+ //collect products
|
|
|
+ for (int i = 0; i < allCombs[j].size(); ++i)
|
|
|
+ {
|
|
|
+ int index = allCombs[j][i];
|
|
|
+
|
|
|
+ int ri = rootsIndex[index];
|
|
|
+ Eigen::Matrix<typename DerivedV::Scalar, 1, 3> w;
|
|
|
+ if (ri>0)
|
|
|
+ w = cfW.block(fi,3*(ri-1),1,3);
|
|
|
+ else
|
|
|
+ w = -cfW.block(fi,3*(-ri-1),1,3);
|
|
|
+ typename DerivedV::Scalar w0 = w.dot(b1);
|
|
|
+ typename DerivedV::Scalar w1 = w.dot(b2);
|
|
|
+ std::complex<typename DerivedV::Scalar> u(w0,w1);
|
|
|
+ tk*= u;
|
|
|
+ }
|
|
|
+ //collect sum
|
|
|
+ ck += tk;
|
|
|
+ }
|
|
|
+ Ck(ind) = ck;
|
|
|
+ ind ++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+template<typename DerivedV, typename DerivedF>
|
|
|
+IGL_INLINE void igl::GeneralPolyVectorFieldFinder<DerivedV, DerivedF>::computek()
|
|
|
+{
|
|
|
+ K.setZero(numE);
|
|
|
+ // For every non-border edge
|
|
|
+ for (unsigned eid=0; eid<numE; ++eid)
|
|
|
+ {
|
|
|
+ if (!isBorderEdge[eid])
|
|
|
+ {
|
|
|
+ int fid0 = E2F(eid,0);
|
|
|
+ int fid1 = E2F(eid,1);
|
|
|
+
|
|
|
+ Eigen::Matrix<typename DerivedV::Scalar, 1, 3> N0 = FN.row(fid0);
|
|
|
+ Eigen::Matrix<typename DerivedV::Scalar, 1, 3> N1 = FN.row(fid1);
|
|
|
+
|
|
|
+ // find common edge on triangle 0 and 1
|
|
|
+ int fid0_vc = -1;
|
|
|
+ int fid1_vc = -1;
|
|
|
+ for (unsigned i=0;i<3;++i)
|
|
|
+ {
|
|
|
+ if (F2E(fid0,i) == eid)
|
|
|
+ fid0_vc = i;
|
|
|
+ if (F2E(fid1,i) == eid)
|
|
|
+ fid1_vc = i;
|
|
|
+ }
|
|
|
+ assert(fid0_vc != -1);
|
|
|
+ assert(fid1_vc != -1);
|
|
|
+
|
|
|
+ Eigen::Matrix<typename DerivedV::Scalar, 1, 3> common_edge = V.row(F(fid0,(fid0_vc+1)%3)) - V.row(F(fid0,fid0_vc));
|
|
|
+ common_edge.normalize();
|
|
|
+
|
|
|
+ // Map the two triangles in a new space where the common edge is the x axis and the N0 the z axis
|
|
|
+ Eigen::Matrix<typename DerivedV::Scalar, 3, 3> P;
|
|
|
+ Eigen::Matrix<typename DerivedV::Scalar, 1, 3> o = V.row(F(fid0,fid0_vc));
|
|
|
+ Eigen::Matrix<typename DerivedV::Scalar, 1, 3> tmp = -N0.cross(common_edge);
|
|
|
+ P << common_edge, tmp, N0;
|
|
|
+// P.transposeInPlace();
|
|
|
+
|
|
|
+
|
|
|
+ Eigen::Matrix<typename DerivedV::Scalar, 3, 3> V0;
|
|
|
+ V0.row(0) = V.row(F(fid0,0)) -o;
|
|
|
+ V0.row(1) = V.row(F(fid0,1)) -o;
|
|
|
+ V0.row(2) = V.row(F(fid0,2)) -o;
|
|
|
+
|
|
|
+ V0 = (P*V0.transpose()).transpose();
|
|
|
+
|
|
|
+// assert(V0(0,2) < 1e-10);
|
|
|
+// assert(V0(1,2) < 1e-10);
|
|
|
+// assert(V0(2,2) < 1e-10);
|
|
|
+
|
|
|
+ Eigen::Matrix<typename DerivedV::Scalar, 3, 3> V1;
|
|
|
+ V1.row(0) = V.row(F(fid1,0)) -o;
|
|
|
+ V1.row(1) = V.row(F(fid1,1)) -o;
|
|
|
+ V1.row(2) = V.row(F(fid1,2)) -o;
|
|
|
+ V1 = (P*V1.transpose()).transpose();
|
|
|
+
|
|
|
+// assert(V1(fid1_vc,2) < 10e-10);
|
|
|
+// assert(V1((fid1_vc+1)%3,2) < 10e-10);
|
|
|
+
|
|
|
+ // compute rotation R such that R * N1 = N0
|
|
|
+ // i.e. map both triangles to the same plane
|
|
|
+ double alpha = -atan2(V1((fid1_vc+2)%3,2),V1((fid1_vc+2)%3,1));
|
|
|
+
|
|
|
+ Eigen::Matrix<typename DerivedV::Scalar, 3, 3> R;
|
|
|
+ R << 1, 0, 0,
|
|
|
+ 0, cos(alpha), -sin(alpha) ,
|
|
|
+ 0, sin(alpha), cos(alpha);
|
|
|
+ V1 = (R*V1.transpose()).transpose();
|
|
|
+
|
|
|
+// assert(V1(0,2) < 1e-10);
|
|
|
+// assert(V1(1,2) < 1e-10);
|
|
|
+// assert(V1(2,2) < 1e-10);
|
|
|
+
|
|
|
+ // measure the angle between the reference frames
|
|
|
+ // k_ij is the angle between the triangle on the left and the one on the right
|
|
|
+ Eigen::Matrix<typename DerivedV::Scalar, 1, 3> ref0 = V0.row(1) - V0.row(0);
|
|
|
+ Eigen::Matrix<typename DerivedV::Scalar, 1, 3> ref1 = V1.row(1) - V1.row(0);
|
|
|
+
|
|
|
+ ref0.normalize();
|
|
|
+ ref1.normalize();
|
|
|
+
|
|
|
+ double ktemp = atan2(ref1(1),ref1(0)) - atan2(ref0(1),ref0(0));
|
|
|
+
|
|
|
+ // just to be sure, rotate ref0 using angle ktemp...
|
|
|
+ Eigen::Matrix<typename DerivedV::Scalar, 2, 2> R2;
|
|
|
+ R2 << cos(ktemp), -sin(ktemp), sin(ktemp), cos(ktemp);
|
|
|
+
|
|
|
+ Eigen::Matrix<typename DerivedV::Scalar, 1, 2> tmp1 = R2*(ref0.head(2)).transpose();
|
|
|
+
|
|
|
+// assert(tmp1(0) - ref1(0) < 1e-10);
|
|
|
+// assert(tmp1(1) - ref1(1) < 1e-10);
|
|
|
+
|
|
|
+ K[eid] = ktemp;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+IGL_INLINE void igl::n_polyvector_general(const Eigen::MatrixXd &V,
|
|
|
+ const Eigen::MatrixXi &F,
|
|
|
+ const Eigen::VectorXi& b,
|
|
|
+ const Eigen::MatrixXd& bc,
|
|
|
+ const Eigen::VectorXi &I,
|
|
|
+ Eigen::MatrixXd &output)
|
|
|
+{
|
|
|
+ Eigen::VectorXi isConstrained = Eigen::VectorXi::Constant(F.rows(),0);
|
|
|
+ Eigen::MatrixXd cfW = Eigen::MatrixXd::Constant(F.rows(),bc.cols(),0);
|
|
|
+
|
|
|
+ for(unsigned i=0; i<b.size();++i)
|
|
|
+ {
|
|
|
+ isConstrained(b(i)) = 1;
|
|
|
+ cfW.row(b(i)) << bc.row(i);
|
|
|
+ }
|
|
|
+
|
|
|
+ int n = I.rows();
|
|
|
+ igl::GeneralPolyVectorFieldFinder<Eigen::MatrixXd, Eigen::MatrixXi> pvff(V,F,n);
|
|
|
+ pvff.solve(isConstrained, cfW, I, output);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+#ifdef IGL_STATIC_LIBRARY
|
|
|
+// Explicit template specialization
|
|
|
+#endif
|