瀏覽代碼

performance optimizations

Alec Jacobson 6 年之前
父節點
當前提交
fd27d213d8
共有 1 個文件被更改,包括 188 次插入158 次删除
  1. 188 158
      include/igl/intrinsic_delaunay_triangulation.cpp

+ 188 - 158
include/igl/intrinsic_delaunay_triangulation.cpp

@@ -41,174 +41,204 @@ IGL_INLINE void igl::intrinsic_delaunay_triangulation(
   typedef typename Derivedl::Scalar Scalar;
   const Index num_faces = F.rows();
 
-  // Copied from delaunay_triangulation
-  bool all_delaunay = false;
-  // Dumb O(#E * #flips). Use queue and gather only edges that could have
-  // changed to make this O(#E + #flips). 
-  while(!all_delaunay) 
-  {
-    all_delaunay = true;
-    for (size_t uei=0; uei<uE2E.size(); uei++) 
+  // Does edge (a,b) exist in the edges of all faces incident on
+  // existing unique edge uei.
+  //
+  // Inputs:
+  //   a  1st end-point of query edge
+  //   b  2nd end-point of query edge
+  //   uei  index into uE/uE2E of unique edge
+  //   uE2E  map from unique edges to half-edges (see unique_edge_map)
+  //   E  #F*3 by 2 list of half-edges
+  //
+  std::vector<Index> face_queue;
+  face_queue.reserve(32);
+  std::vector<Index> pushed;
+  // 32 is faster than 8
+  pushed.reserve(32);
+  const auto edge_exists_near = 
+    [&](const Index & a,const Index & b,const Index & uei)->bool
     {
-      if (uE2E[uei].size() == 2) 
+      face_queue.clear();
+      pushed.clear();
+      assert(a!=b);
+      // Not handling case where (a,b) is edge of face incident on uei
+      // since this can't happen for edge-flipping.
+      assert(a!=uE(uei,0));
+      assert(a!=uE(uei,1));
+      assert(b!=uE(uei,0));
+      assert(b!=uE(uei,1));
+      // starting with the (2) faces incident on e, consider all faces
+      // incident on edges containing either a or b.
+      //
+      // face_queue  Queue containing faces incident on exactly one of a/b
+      // Using a vector seems mildly faster
+      const Index f1 = uE2E[uei][0]%num_faces;
+      const Index f2 = uE2E[uei][1]%num_faces;
+      // map is faster than unordered_map here, and vector + brute force
+      // is_member check is even faster
+      face_queue.push_back(f1);
+      pushed.push_back(f1);
+      face_queue.push_back(f2);
+      pushed.push_back(f2);
+      while(!face_queue.empty())
       {
-        if(!is_intrinsic_delaunay(l,F,uE2E,uei)) 
+        const Index f = face_queue.back();
+        face_queue.pop_back();
+        // consider each edge of this face
+        for(int c = 0;c<3;c++)
         {
-          // update l just before flipping edge
-          //      .        //
-          //     /|\       //
-          //   a/ | \d     //
-          //   /  e  \     //
-          //  /   |   \    //
-          // .----|-f--.   //
-          //  \   |   /    //
-          //   \  |  /     //
-          //   b\α|δ/c     //
-          //     \|/       //
-          //      .        //
-          // Annotated from flip_edge:
-          // Edge to flip [v1,v2] --> [v3,v4]
-          // Before:
-          // F(f1,:) = [v1,v2,v4] // in some cyclic order
-          // F(f2,:) = [v1,v3,v2] // in some cyclic order
-          // After: 
-          // F(f1,:) = [v1,v3,v4] // in *this* order 
-          // F(f2,:) = [v2,v4,v3] // in *this* order
-          //
-          //          v1                 v1
-          //          /|\                / \
-          //        c/ | \b            c/f1 \b
-          //     v3 /f2|f1\ v4  =>  v3 /__f__\ v4
-          //        \  e  /            \ f2  /
-          //        d\ | /a            d\   /a
-          //          \|/                \ /
-          //          v2                 v2
-          //
-          // Compute intrinsic length of oppposite edge
-          assert(uE2E[uei].size() == 2 && "edge should have 2 incident faces");
-          const Index f1 = uE2E[uei][0]%num_faces;
-          const Index f2 = uE2E[uei][1]%num_faces;
-          const Index c1 = uE2E[uei][0]/num_faces;
-          const Index c2 = uE2E[uei][1]/num_faces;
-          assert(c1 < 3);
-          assert(c2 < 3);
-          assert(f1 != f2);
-          const Index v1 = F(f1, (c1+1)%3);
-          const Index v2 = F(f1, (c1+2)%3);
-          const Index v4 = F(f1, c1);
-          const Index v3 = F(f2, c2);
-          assert(F(f2, (c2+2)%3) == v1);
-          assert(F(f2, (c2+1)%3) == v2);
-          // From gptoolbox/mesh/flip_edge.m
-          // "If edge-after-flip already  exists then this will create a non-manifold
-          // edge"
-          // Yes, this can happen: e.g., an edge of a tetrahedron."
-          // "If two edges will be the same edge after flip then this will create a
-          // non-manifold edge."
-          // I dont' think this can happen if we flip one at a time. gptoolbox
-          // flips in parallel.
-          //
-          // Does edge (a,b) exist in the edges of all faces incident on
-          // existing unique edge uei.
-          //
-          // Inputs:
-          //   a  1st end-point of query edge
-          //   b  2nd end-point of query edge
-          //   uei  index into uE/uE2E of unique edge
-          //   uE2E  map from unique edges to half-edges (see unique_edge_map)
-          //   E  #F*3 by 2 list of half-edges
-          //
-          const auto edge_exists_near = 
-            [&](const Index & a,const Index & b,const Index & uei)->bool
+          // Unique edge id
+          const Index uec = EMAP(c*num_faces+f);
+          const Index s = uE(uec,0);
+          const Index d = uE(uec,1);
+          const bool ona = s == a || d == a;
+          const bool onb = s == b || d == b;
+          // Is this the edge we're looking for?
+          if(ona && onb)
+          {
+            return true;
+          }
+          // not incident on either?
+          if(!ona && !onb)
+          {
+            continue;
+          }
+          // loop over all incident half-edges
+          for(const auto & he : uE2E[uec])
           {
-            assert(a!=b);
-            // Not handling case where (a,b) is edge of face incident on uei
-            // since this can't happen for edge-flipping.
-            assert(a!=uE(uei,0));
-            assert(a!=uE(uei,1));
-            assert(b!=uE(uei,0));
-            assert(b!=uE(uei,1));
-            // starting with the (2) faces incident on e, consider all faces
-            // incident on edges containing either a or b.
-            //
-            // face_queue  Queue containing faces incident on exactly one of a/b
-            std::queue<Index> face_queue;
-            const Index f1 = uE2E[uei][0]%num_faces;
-            const Index f2 = uE2E[uei][1]%num_faces;
-            std::map<Index,bool> pushed;
-            face_queue.push(f1);
-            pushed[f1] = true;
-            face_queue.push(f2);
-            pushed[f2] = true;
-            while(!face_queue.empty())
+            // face of this he
+            const Index fhe = he%num_faces;
+            bool already_pushed = false;
+            for(const auto & fp : pushed)
             {
-              const Index f = face_queue.front();
-              face_queue.pop();
-              pushed[f] = true;
-              // consider each edge of this face
-              for(int c = 0;c<3;c++)
+              if(fp == fhe)
               {
-                // Unique edge id
-                const Index uec = EMAP(c*num_faces+f);
-                const Index s = uE(uec,0);
-                const Index d = uE(uec,1);
-                const bool ona = s == a || d == a;
-                const bool onb = s == b || d == b;
-                // Is this the edge we're looking for?
-                if(ona && onb)
-                {
-                  return true;
-                }
-                // not incident on either?
-                if(!ona && !onb)
-                {
-                  continue;
-                }
-                // loop over all incident half-edges
-                for(const auto & he : uE2E[uec])
-                {
-                  // face of this he
-                  const Index fhe = he%num_faces;
-                  if(!pushed[fhe])
-                  {
-                    pushed[fhe] = true;
-                    face_queue.push(fhe);
-                  }
-                }
+                already_pushed = true;
+                break;
               }
             }
-            return false;
-          };
+            if(!already_pushed)
+            {
+              pushed.push_back(fhe);
+              face_queue.push_back(fhe);
+            }
+          }
+        }
+      }
+      return false;
+    };
 
-          bool flippable = !edge_exists_near(v3,v4,uei);
-          if(flippable)
-          {
-            all_delaunay = false;
+  // Vector is faster than queue...
+  std::vector<Index> Q;
+  Q.reserve(uE2E.size());
+  for (size_t uei=0; uei<uE2E.size(); uei++) 
+  {
+    Q.push_back(uei);
+  }
 
-            assert( std::abs(l(f1,c1)-l(f2,c2)) < igl::EPS<Scalar>() );
-            const Scalar e = l(f1,c1);
-            const Scalar a = l(f1,(c1+1)%3);
-            const Scalar b = l(f1,(c1+2)%3);
-            const Scalar c = l(f2,(c2+1)%3);
-            const Scalar d = l(f2,(c2+2)%3);
-            // tan(α/2)
-            const Scalar tan_a_2= tan_half_angle(a,b,e);
-            // tan(δ/2)
-            const Scalar tan_d_2 = tan_half_angle(d,e,c);
-            // tan((α+δ)/2)
-            const Scalar tan_a_d_2 = (tan_a_2 + tan_d_2)/(1.0-tan_a_2*tan_d_2);
-            // cos(α+δ)
-            const Scalar cos_a_d = 
-              (1.0 - tan_a_d_2*tan_a_d_2)/(1.0+tan_a_d_2*tan_a_d_2);
-            const Scalar f = sqrt(b*b + c*c - 2.0*b*c*cos_a_d);
-            l(f1,0) = f;
-            l(f1,1) = b;
-            l(f1,2) = c;
-            l(f2,0) = f;
-            l(f2,1) = d;
-            l(f2,2) = a;
-            flip_edge(F, E, uE, EMAP, uE2E, uei);
-          }
+  while(!Q.empty())
+  {
+    const Index uei = Q.back();
+    Q.pop_back();
+    if (uE2E[uei].size() == 2) 
+    {
+      if(!is_intrinsic_delaunay(l,F,uE2E,uei)) 
+      {
+        // update l just before flipping edge
+        //      .        //
+        //     /|\       //
+        //   a/ | \d     //
+        //   /  e  \     //
+        //  /   |   \    //
+        // .----|-f--.   //
+        //  \   |   /    //
+        //   \  |  /     //
+        //   b\α|δ/c     //
+        //     \|/       //
+        //      .        //
+        // Annotated from flip_edge:
+        // Edge to flip [v1,v2] --> [v3,v4]
+        // Before:
+        // F(f1,:) = [v1,v2,v4] // in some cyclic order
+        // F(f2,:) = [v1,v3,v2] // in some cyclic order
+        // After: 
+        // F(f1,:) = [v1,v3,v4] // in *this* order 
+        // F(f2,:) = [v2,v4,v3] // in *this* order
+        //
+        //          v1                 v1
+        //          /|\                / \
+        //        c/ | \b            c/f1 \b
+        //     v3 /f2|f1\ v4  =>  v3 /__f__\ v4
+        //        \  e  /            \ f2  /
+        //        d\ | /a            d\   /a
+        //          \|/                \ /
+        //          v2                 v2
+        //
+        // Compute intrinsic length of oppposite edge
+        assert(uE2E[uei].size() == 2 && "edge should have 2 incident faces");
+        const Index f1 = uE2E[uei][0]%num_faces;
+        const Index f2 = uE2E[uei][1]%num_faces;
+        const Index c1 = uE2E[uei][0]/num_faces;
+        const Index c2 = uE2E[uei][1]/num_faces;
+        assert(c1 < 3);
+        assert(c2 < 3);
+        assert(f1 != f2);
+        const Index v1 = F(f1, (c1+1)%3);
+        const Index v2 = F(f1, (c1+2)%3);
+        const Index v4 = F(f1, c1);
+        const Index v3 = F(f2, c2);
+        assert(F(f2, (c2+2)%3) == v1);
+        assert(F(f2, (c2+1)%3) == v2);
+        // From gptoolbox/mesh/flip_edge.m
+        // "If edge-after-flip already  exists then this will create a non-manifold
+        // edge"
+        // Yes, this can happen: e.g., an edge of a tetrahedron."
+        // "If two edges will be the same edge after flip then this will create a
+        // non-manifold edge."
+        // I dont' think this can happen if we flip one at a time. gptoolbox
+        // flips in parallel.
+
+        // Over 50% of the time is spent doing this check...
+        bool flippable = !edge_exists_near(v3,v4,uei);
+        if(flippable)
+        {
+          assert( std::abs(l(f1,c1)-l(f2,c2)) < igl::EPS<Scalar>() );
+          const Scalar e = l(f1,c1);
+          const Scalar a = l(f1,(c1+1)%3);
+          const Scalar b = l(f1,(c1+2)%3);
+          const Scalar c = l(f2,(c2+1)%3);
+          const Scalar d = l(f2,(c2+2)%3);
+          // tan(α/2)
+          const Scalar tan_a_2= tan_half_angle(a,b,e);
+          // tan(δ/2)
+          const Scalar tan_d_2 = tan_half_angle(d,e,c);
+          // tan((α+δ)/2)
+          const Scalar tan_a_d_2 = (tan_a_2 + tan_d_2)/(1.0-tan_a_2*tan_d_2);
+          // cos(α+δ)
+          const Scalar cos_a_d = 
+            (1.0 - tan_a_d_2*tan_a_d_2)/(1.0+tan_a_d_2*tan_a_d_2);
+          const Scalar f = sqrt(b*b + c*c - 2.0*b*c*cos_a_d);
+          l(f1,0) = f;
+          l(f1,1) = b;
+          l(f1,2) = c;
+          l(f2,0) = f;
+          l(f2,1) = d;
+          l(f2,2) = a;
+          flip_edge(F, E, uE, EMAP, uE2E, uei);
+          // append neighbors to back
+          const size_t e_24 = f1 + ((c1 + 1) % 3) * num_faces;
+          const size_t e_41 = f1 + ((c1 + 2) % 3) * num_faces;
+          const size_t e_13 = f2 + ((c2 + 1) % 3) * num_faces;
+          const size_t e_32 = f2 + ((c2 + 2) % 3) * num_faces;
+          const size_t ue_24 = EMAP(e_24);
+          const size_t ue_41 = EMAP(e_41);
+          const size_t ue_13 = EMAP(e_13);
+          const size_t ue_32 = EMAP(e_32);
+          Q.push_back(ue_24);
+          Q.push_back(ue_41);
+          Q.push_back(ue_13);
+          Q.push_back(ue_32);
         }
       }
     }