massmatrix.cpp 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. #include "massmatrix.h"
  2. #include "normalize_row_sums.h"
  3. #include "sparse.h"
  4. #include "repmat.h"
  5. #include <Eigen/Geometry>
  6. #include <iostream>
  7. template <typename DerivedV, typename DerivedF, typename Scalar>
  8. IGL_INLINE void igl::massmatrix(
  9. const Eigen::MatrixBase<DerivedV> & V,
  10. const Eigen::MatrixBase<DerivedF> & F,
  11. const MassMatrixType type,
  12. Eigen::SparseMatrix<Scalar>& M)
  13. {
  14. using namespace Eigen;
  15. using namespace std;
  16. assert(type!=MASSMATRIX_FULL);
  17. const int n = V.rows();
  18. const int m = F.rows();
  19. const int simplex_size = F.cols();
  20. Matrix<int,Dynamic,1> MI;
  21. Matrix<int,Dynamic,1> MJ;
  22. Matrix<Scalar,Dynamic,1> MV;
  23. if(simplex_size == 3)
  24. {
  25. // Triangles
  26. // edge lengths numbered same as opposite vertices
  27. Matrix<Scalar,Dynamic,3> l(m,3);
  28. // loop over faces
  29. for(int i = 0;i<m;i++)
  30. {
  31. l(i,0) = sqrt((V.row(F(i,1))-V.row(F(i,2))).array().pow(2).sum());
  32. l(i,1) = sqrt((V.row(F(i,2))-V.row(F(i,0))).array().pow(2).sum());
  33. l(i,2) = sqrt((V.row(F(i,0))-V.row(F(i,1))).array().pow(2).sum());
  34. }
  35. // semiperimeters
  36. Matrix<Scalar,Dynamic,1> s = l.rowwise().sum()*0.5;
  37. assert(s.rows() == m);
  38. // Heron's forumal for area
  39. Matrix<Scalar,Dynamic,1> dblA(m);
  40. for(int i = 0;i<m;i++)
  41. {
  42. dblA(i) = 2.0*sqrt(s(i)*(s(i)-l(i,0))*(s(i)-l(i,1))*(s(i)-l(i,2)));
  43. }
  44. switch(type)
  45. {
  46. case MASSMATRIX_BARYCENTRIC:
  47. // diagonal entries for each face corner
  48. MI.resize(m*3,1); MJ.resize(m*3,1); MV.resize(m*3,1);
  49. MI.block(0*m,0,m,1) = F.col(0);
  50. MI.block(1*m,0,m,1) = F.col(1);
  51. MI.block(2*m,0,m,1) = F.col(2);
  52. MJ = MI;
  53. repmat(dblA,3,1,MV);
  54. MV.array() /= 6.0;
  55. break;
  56. case MASSMATRIX_VORONOI:
  57. {
  58. // diagonal entries for each face corner
  59. // http://www.alecjacobson.com/weblog/?p=874
  60. MI.resize(m*3,1); MJ.resize(m*3,1); MV.resize(m*3,1);
  61. MI.block(0*m,0,m,1) = F.col(0);
  62. MI.block(1*m,0,m,1) = F.col(1);
  63. MI.block(2*m,0,m,1) = F.col(2);
  64. MJ = MI;
  65. // Holy shit this needs to be cleaned up and optimized
  66. Matrix<Scalar,Dynamic,3> cosines(m,3);
  67. cosines.col(0) =
  68. (l.col(2).array().pow(2)+l.col(1).array().pow(2)-l.col(0).array().pow(2))/(l.col(1).array()*l.col(2).array()*2.0);
  69. cosines.col(1) =
  70. (l.col(0).array().pow(2)+l.col(2).array().pow(2)-l.col(1).array().pow(2))/(l.col(2).array()*l.col(0).array()*2.0);
  71. cosines.col(2) =
  72. (l.col(1).array().pow(2)+l.col(0).array().pow(2)-l.col(2).array().pow(2))/(l.col(0).array()*l.col(1).array()*2.0);
  73. Matrix<Scalar,Dynamic,3> barycentric = cosines.array() * l.array();
  74. normalize_row_sums(barycentric,barycentric);
  75. Matrix<Scalar,Dynamic,3> partial = barycentric;
  76. partial.col(0).array() *= dblA.array() * 0.5;
  77. partial.col(1).array() *= dblA.array() * 0.5;
  78. partial.col(2).array() *= dblA.array() * 0.5;
  79. Matrix<Scalar,Dynamic,3> quads(partial.rows(),partial.cols());
  80. quads.col(0) = (partial.col(1)+partial.col(2))*0.5;
  81. quads.col(1) = (partial.col(2)+partial.col(0))*0.5;
  82. quads.col(2) = (partial.col(0)+partial.col(1))*0.5;
  83. quads.col(0) = (cosines.col(0).array()<0).select( 0.25*dblA,quads.col(0));
  84. quads.col(1) = (cosines.col(0).array()<0).select(0.125*dblA,quads.col(1));
  85. quads.col(2) = (cosines.col(0).array()<0).select(0.125*dblA,quads.col(2));
  86. quads.col(0) = (cosines.col(1).array()<0).select(0.125*dblA,quads.col(0));
  87. quads.col(1) = (cosines.col(1).array()<0).select(0.25*dblA,quads.col(1));
  88. quads.col(2) = (cosines.col(1).array()<0).select(0.125*dblA,quads.col(2));
  89. quads.col(0) = (cosines.col(2).array()<0).select(0.125*dblA,quads.col(0));
  90. quads.col(1) = (cosines.col(2).array()<0).select(0.125*dblA,quads.col(1));
  91. quads.col(2) = (cosines.col(2).array()<0).select( 0.25*dblA,quads.col(2));
  92. MV.block(0*m,0,m,1) = quads.col(0);
  93. MV.block(1*m,0,m,1) = quads.col(1);
  94. MV.block(2*m,0,m,1) = quads.col(2);
  95. break;
  96. }
  97. case MASSMATRIX_FULL:
  98. assert(false && "Implementation incomplete");
  99. break;
  100. default:
  101. assert(false && "Unknown Mass matrix type");
  102. }
  103. }else if(simplex_size == 4)
  104. {
  105. assert(V.cols() == 3);
  106. assert(type == MASSMATRIX_BARYCENTRIC);
  107. MI.resize(m*4,1); MJ.resize(m*4,1); MV.resize(m*4,1);
  108. MI.block(0*m,0,m,1) = F.col(0);
  109. MI.block(1*m,0,m,1) = F.col(1);
  110. MI.block(2*m,0,m,1) = F.col(2);
  111. MI.block(3*m,0,m,1) = F.col(3);
  112. MJ = MI;
  113. // loop over tets
  114. for(int i = 0;i<m;i++)
  115. {
  116. // http://en.wikipedia.org/wiki/Tetrahedron#Volume
  117. Matrix<Scalar,3,1> v0m3 = V.row(F(i,0)) - V.row(F(i,3));
  118. Matrix<Scalar,3,1> v1m3 = V.row(F(i,1)) - V.row(F(i,3));
  119. Matrix<Scalar,3,1> v2m3 = V.row(F(i,2)) - V.row(F(i,3));
  120. Scalar v = fabs(v0m3.dot(v1m3.cross(v2m3)))/6.0;
  121. MV(i+0*m) = v/4.0;
  122. MV(i+1*m) = v/4.0;
  123. MV(i+2*m) = v/4.0;
  124. MV(i+3*m) = v/4.0;
  125. }
  126. }else
  127. {
  128. // Unsupported simplex size
  129. assert(false && "Unsupported simplex size");
  130. }
  131. sparse(MI,MJ,MV,n,n,M);
  132. }
  133. #ifndef IGL_HEADER_ONLY
  134. // Explicit template specialization
  135. template void igl::massmatrix<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, double>(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, igl::MassMatrixType, Eigen::SparseMatrix<double, 0, int>&);
  136. #endif