extract_cells.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556
  1. // This file is part of libigl, a simple c++ geometry processing library.
  2. //
  3. // Copyright (C) 2015 Qingnan Zhou <qnzhou@gmail.com>
  4. //
  5. // This Source Code Form is subject to the terms of the Mozilla Public License
  6. // v. 2.0. If a copy of the MPL was not distributed with this file, You can
  7. // obtain one at http://mozilla.org/MPL/2.0/.
  8. //
  9. #include "extract_cells.h"
  10. #include "../../extract_manifold_patches.h"
  11. #include "../../facet_components.h"
  12. #include "../../triangle_triangle_adjacency.h"
  13. #include "../../unique_edge_map.h"
  14. #include "../../get_seconds.h"
  15. #include "closest_facet.h"
  16. #include "order_facets_around_edge.h"
  17. #include "outer_facet.h"
  18. #include <vector>
  19. #include <queue>
  20. //#define EXTRACT_CELLS_DEBUG
  21. template<
  22. typename DerivedV,
  23. typename DerivedF,
  24. typename DerivedC >
  25. IGL_INLINE size_t igl::copyleft::cgal::extract_cells(
  26. const Eigen::PlainObjectBase<DerivedV>& V,
  27. const Eigen::PlainObjectBase<DerivedF>& F,
  28. Eigen::PlainObjectBase<DerivedC>& cells)
  29. {
  30. const size_t num_faces = F.rows();
  31. // Construct edge adjacency
  32. Eigen::MatrixXi E, uE;
  33. Eigen::VectorXi EMAP;
  34. std::vector<std::vector<size_t> > uE2E;
  35. igl::unique_edge_map(F, E, uE, EMAP, uE2E);
  36. // Cluster into manifold patches
  37. Eigen::VectorXi P;
  38. igl::extract_manifold_patches(F, EMAP, uE2E, P);
  39. // Extract cells
  40. DerivedC per_patch_cells;
  41. const size_t num_cells =
  42. igl::copyleft::cgal::extract_cells(V,F,P,E,uE,uE2E,EMAP,per_patch_cells);
  43. // Distribute per-patch cell information to each face
  44. cells.resize(num_faces, 2);
  45. for (size_t i=0; i<num_faces; i++)
  46. {
  47. cells.row(i) = per_patch_cells.row(P[i]);
  48. }
  49. return num_cells;
  50. }
  51. template<
  52. typename DerivedV,
  53. typename DerivedF,
  54. typename DerivedP,
  55. typename DerivedE,
  56. typename DeriveduE,
  57. typename uE2EType,
  58. typename DerivedEMAP,
  59. typename DerivedC >
  60. IGL_INLINE size_t igl::copyleft::cgal::extract_cells(
  61. const Eigen::PlainObjectBase<DerivedV>& V,
  62. const Eigen::PlainObjectBase<DerivedF>& F,
  63. const Eigen::PlainObjectBase<DerivedP>& P,
  64. const Eigen::PlainObjectBase<DerivedE>& E,
  65. const Eigen::PlainObjectBase<DeriveduE>& uE,
  66. const std::vector<std::vector<uE2EType> >& uE2E,
  67. const Eigen::PlainObjectBase<DerivedEMAP>& EMAP,
  68. Eigen::PlainObjectBase<DerivedC>& cells)
  69. {
  70. #ifdef EXTRACT_CELLS_DEBUG
  71. const auto & tictoc = []() -> double
  72. {
  73. static double t_start = igl::get_seconds();
  74. double diff = igl::get_seconds()-t_start;
  75. t_start += diff;
  76. return diff;
  77. };
  78. const auto log_time = [&](const std::string& label) -> void {
  79. std::cout << "extract_cells." << label << ": "
  80. << tictoc() << std::endl;
  81. };
  82. tictoc();
  83. #else
  84. // no-op
  85. const auto log_time = [](const std::string){};
  86. #endif
  87. const size_t num_faces = F.rows();
  88. typedef typename DerivedF::Scalar Index;
  89. const size_t num_patches = P.maxCoeff()+1;
  90. // Extract all cells...
  91. DerivedC raw_cells;
  92. const size_t num_raw_cells =
  93. extract_cells_single_component(V,F,P,uE,uE2E,EMAP,raw_cells);
  94. log_time("extract_single_component_cells");
  95. // Compute triangle-triangle adjacency data-structure
  96. std::vector<std::vector<std::vector<Index > > > TT,_1;
  97. igl::triangle_triangle_adjacency(E, EMAP, uE2E, false, TT, _1);
  98. log_time("compute_face_adjacency");
  99. // Compute connected components of the mesh
  100. Eigen::VectorXi C, counts;
  101. igl::facet_components(TT, C, counts);
  102. log_time("form_components");
  103. const size_t num_components = counts.size();
  104. // components[c] --> list of face indices into F of faces in component c
  105. std::vector<std::vector<size_t> > components(num_components);
  106. // Loop over all faces
  107. for (size_t i=0; i<num_faces; i++)
  108. {
  109. components[C[i]].push_back(i);
  110. }
  111. // Convert vector lists to Eigen lists...
  112. std::vector<Eigen::VectorXi> Is(num_components);
  113. for (size_t i=0; i<num_components; i++)
  114. {
  115. Is[i].resize(components[i].size());
  116. std::copy(components[i].begin(), components[i].end(),Is[i].data());
  117. }
  118. // Find outer facets, their orientations and cells for each component
  119. Eigen::VectorXi outer_facets(num_components);
  120. Eigen::VectorXi outer_facet_orientation(num_components);
  121. Eigen::VectorXi outer_cells(num_components);
  122. for (size_t i=0; i<num_components; i++)
  123. {
  124. bool flipped;
  125. igl::copyleft::cgal::outer_facet(V, F, Is[i], outer_facets[i], flipped);
  126. outer_facet_orientation[i] = flipped?1:0;
  127. outer_cells[i] = raw_cells(P[outer_facets[i]], outer_facet_orientation[i]);
  128. }
  129. #ifdef EXTRACT_CELLS_DEBUG
  130. log_time("outer_facet_per_component");
  131. #endif
  132. // Compute barycenter of a triangle in mesh (V,F)
  133. //
  134. // Inputs:
  135. // fid index into F
  136. // Returns row-vector of barycenter coordinates
  137. const auto get_triangle_center = [&V,&F](const size_t fid)
  138. {
  139. return ((V.row(F(fid,0))+V.row(F(fid,1))+V.row(F(fid,2)))/3.0).eval();
  140. };
  141. std::vector<std::vector<size_t> > nested_cells(num_raw_cells);
  142. std::vector<std::vector<size_t> > ambient_cells(num_raw_cells);
  143. std::vector<std::vector<size_t> > ambient_comps(num_components);
  144. // Only bother if there's more than one component
  145. if(num_components > 1)
  146. {
  147. // construct bounding boxes for each component
  148. DerivedV bbox_min(num_components, 3);
  149. DerivedV bbox_max(num_components, 3);
  150. // Why not just initialize to numeric_limits::min, numeric_limits::max?
  151. bbox_min.rowwise() = V.colwise().maxCoeff().eval();
  152. bbox_max.rowwise() = V.colwise().minCoeff().eval();
  153. // Loop over faces
  154. for (size_t i=0; i<num_faces; i++)
  155. {
  156. // component of this face
  157. const auto comp_id = C[i];
  158. const auto& f = F.row(i);
  159. for (size_t j=0; j<3; j++)
  160. {
  161. for(size_t d=0;d<3;d++)
  162. {
  163. bbox_min(comp_id,d) = std::min(bbox_min(comp_id,d), V(f[j],d));
  164. bbox_max(comp_id,d) = std::max(bbox_max(comp_id,d), V(f[j],d));
  165. }
  166. }
  167. }
  168. // Return true if box of component ci intersects that of cj
  169. const auto bbox_intersects = [&bbox_max,&bbox_min](size_t ci, size_t cj)
  170. {
  171. return !(
  172. bbox_max(ci,0) < bbox_min(cj,0) ||
  173. bbox_max(ci,1) < bbox_min(cj,1) ||
  174. bbox_max(ci,2) < bbox_min(cj,2) ||
  175. bbox_max(cj,0) < bbox_min(ci,0) ||
  176. bbox_max(cj,1) < bbox_min(ci,1) ||
  177. bbox_max(cj,2) < bbox_min(ci,2));
  178. };
  179. // Loop over components. This section is O(m²)
  180. for (size_t i=0; i<num_components; i++)
  181. {
  182. // List of components that could overlap with component i
  183. std::vector<size_t> candidate_comps;
  184. candidate_comps.reserve(num_components);
  185. // Loop over components
  186. for (size_t j=0; j<num_components; j++)
  187. {
  188. if (i == j) continue;
  189. if (bbox_intersects(i,j)) candidate_comps.push_back(j);
  190. }
  191. const size_t num_candidate_comps = candidate_comps.size();
  192. if (num_candidate_comps == 0) continue;
  193. // Get query points on each candidate component: barycenter of
  194. // outer-facet
  195. DerivedV queries(num_candidate_comps, 3);
  196. for (size_t j=0; j<num_candidate_comps; j++)
  197. {
  198. const size_t index = candidate_comps[j];
  199. queries.row(j) = get_triangle_center(outer_facets[index]);
  200. }
  201. // Gather closest facets in ith component to each query point and their
  202. // orientations
  203. const auto& I = Is[i];
  204. Eigen::VectorXi closest_facets, closest_facet_orientations;
  205. closest_facet(V, F, I, queries,
  206. uE2E, EMAP, closest_facets, closest_facet_orientations);
  207. // Loop over all candidates
  208. for (size_t j=0; j<num_candidate_comps; j++)
  209. {
  210. const size_t index = candidate_comps[j];
  211. const size_t closest_patch = P[closest_facets[j]];
  212. const size_t closest_patch_side = closest_facet_orientations[j] ? 0:1;
  213. // The cell id of the closest patch
  214. const size_t ambient_cell =
  215. raw_cells(closest_patch,closest_patch_side);
  216. if (ambient_cell != (size_t)outer_cells[i])
  217. {
  218. // ---> component index inside component i, because the cell of the
  219. // closest facet on i to component index is **not** the same as the
  220. // "outer cell" of component i: component index is **not** outside of
  221. // component i (therefore it's inside).
  222. nested_cells[ambient_cell].push_back(outer_cells[index]);
  223. ambient_cells[outer_cells[index]].push_back(ambient_cell);
  224. ambient_comps[index].push_back(i);
  225. }
  226. }
  227. }
  228. }
  229. #ifdef EXTRACT_CELLS_DEBUG
  230. log_time("nested_relationship");
  231. #endif
  232. const size_t INVALID = std::numeric_limits<size_t>::max();
  233. const size_t INFINITE_CELL = num_raw_cells;
  234. std::vector<size_t> embedded_cells(num_raw_cells, INVALID);
  235. for (size_t i=0; i<num_components; i++) {
  236. const size_t outer_cell = outer_cells[i];
  237. const auto& ambient_comps_i = ambient_comps[i];
  238. const auto& ambient_cells_i = ambient_cells[outer_cell];
  239. const size_t num_ambient_comps = ambient_comps_i.size();
  240. assert(num_ambient_comps == ambient_cells_i.size());
  241. if (num_ambient_comps > 0) {
  242. size_t embedded_comp = INVALID;
  243. size_t embedded_cell = INVALID;
  244. for (size_t j=0; j<num_ambient_comps; j++) {
  245. if (ambient_comps[ambient_comps_i[j]].size() ==
  246. num_ambient_comps-1) {
  247. embedded_comp = ambient_comps_i[j];
  248. embedded_cell = ambient_cells_i[j];
  249. break;
  250. }
  251. }
  252. assert(embedded_comp != INVALID);
  253. assert(embedded_cell != INVALID);
  254. embedded_cells[outer_cell] = embedded_cell;
  255. } else {
  256. embedded_cells[outer_cell] = INFINITE_CELL;
  257. }
  258. }
  259. for (size_t i=0; i<num_patches; i++) {
  260. if (embedded_cells[raw_cells(i,0)] != INVALID) {
  261. raw_cells(i,0) = embedded_cells[raw_cells(i, 0)];
  262. }
  263. if (embedded_cells[raw_cells(i,1)] != INVALID) {
  264. raw_cells(i,1) = embedded_cells[raw_cells(i, 1)];
  265. }
  266. }
  267. size_t count = 0;
  268. std::vector<size_t> mapped_indices(num_raw_cells+1, INVALID);
  269. // Always map infinite cell to index 0.
  270. mapped_indices[INFINITE_CELL] = count;
  271. count++;
  272. for (size_t i=0; i<num_patches; i++) {
  273. const size_t old_positive_cell_id = raw_cells(i, 0);
  274. const size_t old_negative_cell_id = raw_cells(i, 1);
  275. size_t positive_cell_id, negative_cell_id;
  276. if (mapped_indices[old_positive_cell_id] == INVALID) {
  277. mapped_indices[old_positive_cell_id] = count;
  278. positive_cell_id = count;
  279. count++;
  280. } else {
  281. positive_cell_id = mapped_indices[old_positive_cell_id];
  282. }
  283. if (mapped_indices[old_negative_cell_id] == INVALID) {
  284. mapped_indices[old_negative_cell_id] = count;
  285. negative_cell_id = count;
  286. count++;
  287. } else {
  288. negative_cell_id = mapped_indices[old_negative_cell_id];
  289. }
  290. raw_cells(i, 0) = positive_cell_id;
  291. raw_cells(i, 1) = negative_cell_id;
  292. }
  293. cells = raw_cells;
  294. #ifdef EXTRACT_CELLS_DEBUG
  295. log_time("finalize");
  296. #endif
  297. return count;
  298. }
  299. template<
  300. typename DerivedV,
  301. typename DerivedF,
  302. typename DerivedP,
  303. typename DeriveduE,
  304. typename uE2EType,
  305. typename DerivedEMAP,
  306. typename DerivedC>
  307. IGL_INLINE size_t igl::copyleft::cgal::extract_cells_single_component(
  308. const Eigen::PlainObjectBase<DerivedV>& V,
  309. const Eigen::PlainObjectBase<DerivedF>& F,
  310. const Eigen::PlainObjectBase<DerivedP>& P,
  311. const Eigen::PlainObjectBase<DeriveduE>& uE,
  312. const std::vector<std::vector<uE2EType> >& uE2E,
  313. const Eigen::PlainObjectBase<DerivedEMAP>& EMAP,
  314. Eigen::PlainObjectBase<DerivedC>& cells)
  315. {
  316. const size_t num_faces = F.rows();
  317. // Input:
  318. // index index into #F*3 list of undirect edges
  319. // Returns index into face
  320. const auto edge_index_to_face_index = [&num_faces](size_t index)
  321. {
  322. return index % num_faces;
  323. };
  324. // Determine if a face (containing undirected edge {s,d} is consistently
  325. // oriented with directed edge {s,d} (or otherwise it is with {d,s})
  326. //
  327. // Inputs:
  328. // fid face index into F
  329. // s source index of edge
  330. // d destination index of edge
  331. // Returns true if face F(fid,:) is consistent with {s,d}
  332. const auto is_consistent =
  333. [&F](const size_t fid, const size_t s, const size_t d) -> bool
  334. {
  335. if ((size_t)F(fid, 0) == s && (size_t)F(fid, 1) == d) return false;
  336. if ((size_t)F(fid, 1) == s && (size_t)F(fid, 2) == d) return false;
  337. if ((size_t)F(fid, 2) == s && (size_t)F(fid, 0) == d) return false;
  338. if ((size_t)F(fid, 0) == d && (size_t)F(fid, 1) == s) return true;
  339. if ((size_t)F(fid, 1) == d && (size_t)F(fid, 2) == s) return true;
  340. if ((size_t)F(fid, 2) == d && (size_t)F(fid, 0) == s) return true;
  341. throw "Invalid face!";
  342. return false;
  343. };
  344. const size_t num_unique_edges = uE.rows();
  345. const size_t num_patches = P.maxCoeff() + 1;
  346. // patch_edge_adj[p] --> list {e,f,g,...} such that p is a patch id and
  347. // e,f,g etc. are edge indices into
  348. std::vector<std::vector<size_t> > patch_edge_adj(num_patches);
  349. // orders[u] --> J where u is an index into unique edges uE and J is a
  350. // #adjacent-faces list of face-edge indices into F*3 sorted cyclicaly around
  351. // edge u.
  352. std::vector<Eigen::VectorXi> orders(num_unique_edges);
  353. // orientations[u] ---> list {f1,f2, ...} where u is an index into unique edges uE
  354. // and points to #adj-facets long list of flags whether faces are oriented
  355. // to point their normals clockwise around edge when looking along the
  356. // edge.
  357. std::vector<std::vector<bool> > orientations(num_unique_edges);
  358. // Loop over unique edges
  359. for (size_t i=0; i<num_unique_edges; i++)
  360. {
  361. const size_t s = uE(i,0);
  362. const size_t d = uE(i,1);
  363. const auto adj_faces = uE2E[i];
  364. // If non-manifold (more than two incident faces)
  365. if (adj_faces.size() > 2)
  366. {
  367. // signed_adj_faces[a] --> sid where a is an index into adj_faces
  368. // (list of face edges on {s,d}) and sid is a signed index for resolve
  369. // co-planar duplicates consistently (i.e. using simulation of
  370. // simplicity).
  371. std::vector<int> signed_adj_faces;
  372. for (auto ei : adj_faces)
  373. {
  374. const size_t fid = edge_index_to_face_index(ei);
  375. bool cons = is_consistent(fid, s, d);
  376. signed_adj_faces.push_back((fid+1)*(cons ? 1:-1));
  377. }
  378. {
  379. // Sort adjacent faces cyclically around {s,d}
  380. auto& order = orders[i];
  381. // order[f] will reveal the order of face f in signed_adj_faces
  382. order_facets_around_edge(V, F, s, d, signed_adj_faces, order);
  383. // Determine if each facet is oriented to point its normal clockwise or
  384. // not around the {s,d} (normals are not explicitly computed/used)
  385. auto& orientation = orientations[i];
  386. orientation.resize(order.size());
  387. std::transform(
  388. order.data(),
  389. order.data() + order.size(),
  390. orientation.begin(),
  391. [&signed_adj_faces](const int i){ return signed_adj_faces[i] > 0;});
  392. // re-index order from adjacent faces to full face list. Now order
  393. // indexes F directly
  394. std::transform(
  395. order.data(),
  396. order.data() + order.size(),
  397. order.data(),
  398. [&adj_faces](const int index){ return adj_faces[index];});
  399. }
  400. // loop over adjacent faces, remember that patch is adjacent to this edge
  401. for(const auto & ei : adj_faces)
  402. {
  403. const size_t fid = edge_index_to_face_index(ei);
  404. patch_edge_adj[P[fid]].push_back(ei);
  405. }
  406. }
  407. }
  408. // Initialize all patch-to-cell indices as "invalid" (unlabeled)
  409. const int INVALID = std::numeric_limits<int>::max();
  410. cells.resize(num_patches, 2);
  411. cells.setConstant(INVALID);
  412. // Given a "seed" patch id, a cell id, and which side of the patch that cell
  413. // lies, identify all other patches bounding this cell (and tell them that
  414. // they do)
  415. //
  416. // Inputs:
  417. // seed_patch_id index into patches
  418. // cell_idx index into cells
  419. // seed_patch_side 0 or 1 depending on whether cell_idx is on left or
  420. // right side of seed_patch_id
  421. // cells #cells by 2 list of current assignment of cells incident on each
  422. // side of a patch
  423. // Outputs:
  424. // cells udpated (see input)
  425. //
  426. const auto & peel_cell_bd =
  427. [&P,&patch_edge_adj,&EMAP,&orders,&orientations,&num_faces](
  428. const size_t seed_patch_id,
  429. const short seed_patch_side,
  430. const size_t cell_idx,
  431. Eigen::PlainObjectBase<DerivedC>& cells)
  432. {
  433. typedef std::pair<size_t, short> PatchSide;
  434. // Initialize a queue of {p,side} patch id and patch side pairs to BFS over
  435. // all patches
  436. std::queue<PatchSide> Q;
  437. Q.emplace(seed_patch_id, seed_patch_side);
  438. // assign cell id of seed patch on appropriate side
  439. cells(seed_patch_id, seed_patch_side) = cell_idx;
  440. while (!Q.empty())
  441. {
  442. // Pop patch from Q
  443. const auto entry = Q.front();
  444. Q.pop();
  445. const size_t patch_id = entry.first;
  446. const short side = entry.second;
  447. // face-edges adjacent to patch
  448. const auto& adj_edges = patch_edge_adj[patch_id];
  449. // Loop over **ALL EDGES IN THE ENTIRE PATCH** not even just the boundary
  450. // edges, all edges... O(n)
  451. for (const auto& ei : adj_edges)
  452. {
  453. // unique edge
  454. const size_t uei = EMAP[ei];
  455. // ordering of face-edges stored at edge
  456. const auto& order = orders[uei];
  457. // consistent orientation flags at face-edges stored at edge
  458. const auto& orientation = orientations[uei];
  459. const size_t edge_valance = order.size();
  460. // Search for ei's (i.e. patch_id's) place in the ordering: O(#patches)
  461. size_t curr_i = 0;
  462. for (curr_i=0; curr_i < edge_valance; curr_i++)
  463. {
  464. if ((size_t)order[curr_i] == ei) break;
  465. }
  466. assert(curr_i < edge_valance && "Failed to find edge.");
  467. // is the starting face consistent?
  468. const bool cons = orientation[curr_i];
  469. // Look clockwise or counter-clockwise for the next face, depending on
  470. // whether looking to left or right side and whether consistently
  471. // oriented or not.
  472. size_t next;
  473. if (side == 0)
  474. {
  475. next = (cons ? (curr_i + 1) :
  476. (curr_i + edge_valance - 1)) % edge_valance;
  477. } else {
  478. next = (cons ? (curr_i+edge_valance-1) : (curr_i+1))%edge_valance;
  479. }
  480. // Determine face-edge index of next face
  481. const size_t next_ei = order[next];
  482. // Determine whether next is consistently oriented
  483. const bool next_cons = orientation[next];
  484. // Determine patch of next
  485. const size_t next_patch_id = P[next_ei % num_faces];
  486. // Determine which side of patch cell_idx is on, based on whether the
  487. // consistency of next matches the consistency of this patch and which
  488. // side of this patch we're on.
  489. const short next_patch_side = (next_cons != cons) ? side:abs(side-1);
  490. // If that side of next's patch is not labeled, then label and add to
  491. // queue
  492. if (cells(next_patch_id, next_patch_side) == INVALID)
  493. {
  494. Q.emplace(next_patch_id, next_patch_side);
  495. cells(next_patch_id, next_patch_side) = cell_idx;
  496. }else
  497. {
  498. assert(
  499. (size_t)cells(next_patch_id, next_patch_side) == cell_idx &&
  500. "Encountered cell assignment inconsistency");
  501. }
  502. }
  503. }
  504. };
  505. size_t count=0;
  506. // Loop over all patches
  507. for (size_t i=0; i<num_patches; i++)
  508. {
  509. // If left side of patch is still unlabeled, create a new cell and find all
  510. // patches also on its boundary
  511. if (cells(i, 0) == INVALID)
  512. {
  513. peel_cell_bd(i, 0, count,cells);
  514. count++;
  515. }
  516. // Likewise for right side
  517. if (cells(i, 1) == INVALID)
  518. {
  519. peel_cell_bd(i, 1, count,cells);
  520. count++;
  521. }
  522. }
  523. return count;
  524. }
  525. #ifdef IGL_STATIC_LIBRARY
  526. #include <CGAL/Exact_predicates_exact_constructions_kernel.h>
  527. template unsigned long igl::copyleft::cgal::extract_cells<Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, unsigned long, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, std::vector<std::vector<unsigned long, std::allocator<unsigned long> >, std::allocator<std::vector<unsigned long, std::allocator<unsigned long> > > > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&);
  528. #endif