123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725 |
- #include <Eigen/Geometry>
- #include <Eigen/Dense>
- #include <Eigen/Sparse>
- #include "../python_shared.h"
- /// Creates Python bindings for a dynamic Eigen matrix
- template <typename Type>
- py::class_<Type> bind_eigen_2(py::module &m, const char *name,
- py::object parent = py::object()) {
- typedef typename Type::Scalar Scalar;
- /* Many Eigen functions are templated and can't easily be referenced using
- a function pointer, thus a big portion of the binding code below
- instantiates Eigen code using small anonymous wrapper functions */
- py::class_<Type> matrix(m, name, parent);
- matrix
- /* Constructors */
- .def(py::init<>())
- .def(py::init<size_t, size_t>())
- .def("__init__", [](Type &m, Scalar f) {
- new (&m) Type(1, 1);
- m(0, 0) = f;
- })
- .def("__init__", [](Type &m, std::vector<std::vector< Scalar> >& b) {
- if (b.size() == 0)
- {
- new (&m) Type(0, 0);
- return;
- }
- // Size checks
- unsigned rows = b.size();
- unsigned cols = b[0].size();
- for (unsigned i=0;i<rows;++i)
- if (b[i].size() != cols)
- throw std::runtime_error("All rows should have the same size!");
- new (&m) Type(rows, cols);
- m.resize(rows,cols);
- for (unsigned i=0;i<rows;++i)
- for (unsigned j=0;j<cols;++j)
- m(i,j) = b[i][j];
- return;
- })
- .def("__init__", [](Type &m, std::vector<Scalar>& b) {
- if (b.size() == 0)
- {
- new (&m) Type(0, 0);
- return;
- }
- // Size checks
- unsigned rows = b.size();
- unsigned cols = 1;
- new (&m) Type(rows, cols);
- m.resize(rows,cols);
- for (unsigned i=0;i<rows;++i)
- m(i,0) = b[i];
- return;
- })
- .def("__init__", [](Type &m, py::buffer b) {
- py::buffer_info info = b.request();
- if (info.format != py::format_descriptor<Scalar>::value())
- throw std::runtime_error("Incompatible buffer format!");
- if (info.ndim == 1) {
- new (&m) Type(info.shape[0], 1);
- memcpy(m.data(), info.ptr, sizeof(Scalar) * m.size());
- } else if (info.ndim == 2) {
- if (info.strides[0] == sizeof(Scalar)) {
- new (&m) Type(info.shape[0], info.shape[1]);
- memcpy(m.data(), info.ptr, sizeof(Scalar) * m.size());
- } else {
- new (&m) Type(info.shape[1], info.shape[0]);
- memcpy(m.data(), info.ptr, sizeof(Scalar) * m.size());
- m.transposeInPlace();
- }
- } else {
- throw std::runtime_error("Incompatible buffer dimension!");
- }
- })
- /* Size query functions */
- .def("size", [](const Type &m) { return m.size(); })
- .def("cols", [](const Type &m) { return m.cols(); })
- .def("rows", [](const Type &m) { return m.rows(); })
- .def("shape", [](const Type &m) { return std::tuple<int,int>(m.rows(), m.cols()); })
- /* Extract rows and colums */
- .def("col", [](const Type &m, int i) {
- if (i<0 || i>=m.cols())
- throw std::runtime_error("Column index out of bound.");
- return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(m.col(i));
- })
- .def("row", [](const Type &m, int i) {
- if (i<0 || i>=m.rows())
- throw std::runtime_error("Row index out of bound.");
- return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(m.row(i));
- })
- /* Initialization */
- .def("setZero", [](Type &m) { m.setZero(); })
- .def("setIdentity", [](Type &m) { m.setIdentity(); })
- .def("setConstant", [](Type &m, Scalar value) { m.setConstant(value); })
- .def("setRandom", [](Type &m) { m.setRandom(); })
- .def("setZero", [](Type &m, const int& r, const int& c) { m.setZero(r,c); })
- .def("setIdentity", [](Type &m, const int& r, const int& c) { m.setIdentity(r,c); })
- .def("setConstant", [](Type &m, const int& r, const int& c, Scalar value) { m.setConstant(r,c,value); })
- .def("setRandom", [](Type &m, const int& r, const int& c) { m.setRandom(r,c); })
- .def("setCol", [](Type &m, int i, const Type& v) { m.col(i) = v; })
- .def("setRow", [](Type &m, int i, const Type& v) { m.row(i) = v; })
- .def("setBlock", [](Type &m, int i, int j, int p, int q, const Type& v) { m.block(i,j,p,q) = v; })
- .def("block", [](Type &m, int i, int j, int p, int q) { return Type(m.block(i,j,p,q)); })
- .def("rightCols", [](Type &m, const int& k) { return Type(m.rightCols(k)); })
- .def("leftCols", [](Type &m, const int& k) { return Type(m.leftCols(k)); })
- .def("setLeftCols", [](Type &m, const int& k, const Type& v) { return Type(m.leftCols(k) = v); })
- .def("setRightCols", [](Type &m, const int& k, const Type& v) { return Type(m.rightCols(k) = v); })
- .def("topRows", [](Type &m, const int& k) { return Type(m.topRows(k)); })
- .def("bottomRows", [](Type &m, const int& k) { return Type(m.bottomRows(k)); })
- .def("setTopRows", [](Type &m, const int& k, const Type& v) { return Type(m.topRows(k) = v); })
- .def("setBottomRows", [](Type &m, const int& k, const Type& v) { return Type(m.bottomRows(k) = v); })
- .def("topLeftCorner", [](Type &m, const int& p, const int&q) { return Type(m.topLeftCorner(p,q)); })
- .def("bottomLeftCorner", [](Type &m, const int& p, const int&q) { return Type(m.bottomLeftCorner(p,q)); })
- .def("topRightCorner", [](Type &m, const int& p, const int&q) { return Type(m.topRightCorner(p,q)); })
- .def("bottomRightCorner", [](Type &m, const int& p, const int&q) { return Type(m.bottomRightCorner(p,q)); })
- /* Resizing */
- .def("resize", [](Type &m, size_t s0, size_t s1) { m.resize(s0, s1); })
- .def("resizeLike", [](Type &m, const Type &m2) { m.resizeLike(m2); })
- .def("conservativeResize", [](Type &m, size_t s0, size_t s1) { m.conservativeResize(s0, s1); })
- .def("mean", [](const Type &m) {return m.mean();})
- .def("sum", [](const Type &m) {return m.sum();})
- .def("prod", [](const Type &m) {return m.prod();})
- .def("trace", [](const Type &m) {return m.trace();})
- .def("norm", [](const Type &m) {return m.norm();})
- .def("squaredNorm", [](const Type &m) {return m.squaredNorm();})
- .def("squaredMean", [](const Type &m) {return m.array().square().mean();})
- .def("minCoeff", [](const Type &m) {return m.minCoeff();} )
- .def("maxCoeff", [](const Type &m) {return m.maxCoeff();} )
- .def("castdouble", [](const Type &m) {return Eigen::MatrixXd(m.template cast<double>());})
- .def("castint", [](const Type &m) {return Eigen::MatrixXi(m.template cast<int>());})
- /* Component-wise operations */
- .def("cwiseAbs", &Type::cwiseAbs)
- .def("cwiseAbs2", &Type::cwiseAbs2)
- .def("cwiseSqrt", &Type::cwiseSqrt)
- .def("cwiseInverse", &Type::cwiseInverse)
- .def("cwiseMin", [](const Type &m1, const Type &m2) -> Type { return m1.cwiseMin(m2); })
- .def("cwiseMax", [](const Type &m1, const Type &m2) -> Type { return m1.cwiseMax(m2); })
- .def("cwiseMin", [](const Type &m1, Scalar s) -> Type { return m1.cwiseMin(s); })
- .def("cwiseMax", [](const Type &m1, Scalar s) -> Type { return m1.cwiseMax(s); })
- .def("cwiseProduct", [](const Type &m1, const Type &m2) -> Type { return m1.cwiseProduct(m2); })
- .def("cwiseQuotient", [](const Type &m1, const Type &m2) -> Type { return m1.cwiseQuotient(m2); })
- /* Row and column-wise operations */
- .def("rowwiseSet", [](Type &m, const Type &m2) {return Type(m.rowwise() = Eigen::Matrix<Scalar, 1, Eigen::Dynamic>(m2));} )
- .def("rowwiseSum", [](const Type &m) {return Type(m.rowwise().sum());} )
- .def("rowwiseProd", [](const Type &m) {return Type(m.rowwise().prod());} )
- .def("rowwiseMean", [](const Type &m) {return Type(m.rowwise().mean());} )
- .def("rowwiseNorm", [](const Type &m) {return Type(m.rowwise().norm());} )
- .def("rowwiseNormalized", [](const Type &m) {return Type(m.rowwise().normalized());} )
- .def("rowwiseReverse", [](const Type &m) {return Type(m.rowwise().reverse());} )
- .def("rowwiseMinCoeff", [](const Type &m) {return Type(m.rowwise().minCoeff());} )
- .def("rowwiseMaxCoeff", [](const Type &m) {return Type(m.rowwise().maxCoeff());} )
- .def("colwiseSet", [](Type &m, const Type &m2) {return Type(m.colwise() = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>(m2));} )
- .def("colwiseSum", [](const Type &m) {return Type(m.colwise().sum());} )
- .def("colwiseProd", [](const Type &m) {return Type(m.colwise().prod());} )
- .def("colwiseMean", [](const Type &m) {return Type(m.colwise().mean());} )
- .def("colwiseNorm", [](const Type &m) {return Type(m.colwise().norm());} )
- .def("colwiseNormalized", [](const Type &m) {return Type(m.colwise().normalized());} )
- .def("colwiseReverse", [](const Type &m) {return Type(m.colwise().reverse());} )
- .def("colwiseMinCoeff", [](const Type &m) {return Type(m.colwise().minCoeff());} )
- .def("colwiseMaxCoeff", [](const Type &m) {return Type(m.colwise().maxCoeff());} )
- .def("replicate", [](const Type &m, const int& r, const int& c) {return Type(m.replicate(r,c));} )
- .def("asDiagonal", [](const Type &m) {return Eigen::DiagonalMatrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(m.asDiagonal());} )
- .def("sparseView", [](Type &m) { return Eigen::SparseMatrix<Scalar>(m.sparseView()); })
- /* Arithmetic operators (def_cast forcefully casts the result back to a
- Type to avoid type issues with Eigen's crazy expression templates) */
- .def_cast(-py::self)
- .def_cast(py::self + py::self)
- .def_cast(py::self - py::self)
- .def_cast(py::self * py::self)
- // .def_cast(py::self - Scalar())
- // .def_cast(py::self * Scalar())
- // .def_cast(py::self / Scalar())
- .def("__mul__", []
- (const Type &a, const Scalar& b)
- {
- return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(a * b);
- })
- .def("__rmul__", [](const Type& a, const Scalar& b)
- {
- return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(b * a);
- })
- .def("__add__", []
- (const Type &a, const Scalar& b)
- {
- return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(a.array() + b);
- })
- .def("__radd__", [](const Type& a, const Scalar& b)
- {
- return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(b + a.array());
- })
- .def("__sub__", []
- (const Type &a, const Scalar& b)
- {
- return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(a.array() - b);
- })
- .def("__rsub__", [](const Type& a, const Scalar& b)
- {
- return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(b - a.array());
- })
- .def("__div__", []
- (const Type &a, const Scalar& b)
- {
- return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(a / b);
- })
- .def("__truediv__", []
- (const Type &a, const Scalar& b)
- {
- return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(a / b);
- })
- /* Arithmetic in-place operators */
- .def_cast(py::self += py::self)
- .def_cast(py::self -= py::self)
- .def_cast(py::self *= py::self)
- .def_cast(py::self *= Scalar())
- .def_cast(py::self /= Scalar())
- /* Comparison operators */
- .def(py::self == py::self)
- .def(py::self != py::self)
- .def("__lt__", []
- (const Type &a, const Scalar& b) -> Eigen::Matrix<bool,Eigen::Dynamic,Eigen::Dynamic>
- {
- return Eigen::Matrix<bool, Eigen::Dynamic, Eigen::Dynamic>(a.array() < b);
- })
- .def("__gt__", []
- (const Type &a, const Scalar& b) -> Eigen::Matrix<bool,Eigen::Dynamic,Eigen::Dynamic>
- {
- return Eigen::Matrix<bool, Eigen::Dynamic, Eigen::Dynamic>(a.array() > b);
- })
- .def("__le__", []
- (const Type &a, const Scalar& b) -> Eigen::Matrix<bool,Eigen::Dynamic,Eigen::Dynamic>
- {
- return Eigen::Matrix<bool, Eigen::Dynamic, Eigen::Dynamic>(a.array() <= b);
- })
- .def("__ge__", []
- (const Type &a, const Scalar& b) -> Eigen::Matrix<bool,Eigen::Dynamic,Eigen::Dynamic>
- {
- return Eigen::Matrix<bool, Eigen::Dynamic, Eigen::Dynamic>(a.array() >= b);
- })
- .def("transposeInPlace", [](Type &m) { m.transposeInPlace(); })
- /* Other transformations */
- .def("transpose", [](Type &m) -> Type { return m.transpose(); })
- /* Python protocol implementations */
- .def("__repr__", [](const Type &v) {
- std::ostringstream oss;
- oss << v;
- return oss.str();
- })
- .def("__getitem__", [](const Type &m, std::pair<size_t, size_t> i) {
- if (i.first >= (size_t) m.rows() || i.second >= (size_t) m.cols())
- throw py::index_error();
- return m(i.first, i.second);
- })
- .def("__setitem__", [](Type &m, std::pair<size_t, size_t> i, Scalar v) {
- if (i.first >= (size_t) m.rows() || i.second >= (size_t) m.cols())
- throw py::index_error();
- m(i.first, i.second) = v;
- })
- .def("__getitem__", [](const Type &m, size_t i) {
- if (i >= (size_t) m.size())
- throw py::index_error();
- return m(i);
- })
- .def("__setitem__", [](Type &m, size_t i, Scalar v) {
- if (i >= (size_t) m.size())
- throw py::index_error();
- m(i) = v;
- })
- /* Buffer access for interacting with NumPy */
- .def_buffer([](Type &m) -> py::buffer_info {
- return py::buffer_info(
- m.data(), /* Pointer to buffer */
- sizeof(Scalar), /* Size of one scalar */
- /* Python struct-style format descriptor */
- py::format_descriptor<Scalar>::value(),
- 2, /* Number of dimensions */
- { (size_t) m.rows(), /* Buffer dimensions */
- (size_t) m.cols() },
- { sizeof(Scalar), /* Strides (in bytes) for each index */
- sizeof(Scalar) * m.rows() }
- );
- })
- /* Static initializers */
- .def_static("Zero", [](size_t n, size_t m) { return Type(Type::Zero(n, m)); })
- .def_static("Random", [](size_t n, size_t m) { return Type(Type::Random(n, m)); })
- .def_static("Ones", [](size_t n, size_t m) { return Type(Type::Ones(n, m)); })
- .def_static("Constant", [](size_t n, size_t m, Scalar value) { return Type(Type::Constant(n, m, value)); })
- .def_static("Identity", [](size_t n, size_t m) { return Type(Type::Identity(n, m)); })
- .def("MapMatrix", [](const Type& m, size_t r, size_t c)
- {
- return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(Eigen::Map<const Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>>(m.data(),r,c));
- })
- .def("copy", [](const Type &m) { return Type(m); })
- ;
- return matrix;
- }
- /// Creates Python bindings for a dynamic Eigen sparse order-2 tensor (i.e. a matrix)
- template <typename Type>
- py::class_<Type> bind_eigen_sparse_2(py::module &m, const char *name,
- py::object parent = py::object()) {
- typedef typename Type::Scalar Scalar;
- /* Many Eigen functions are templated and can't easily be referenced using
- a function pointer, thus a big portion of the binding code below
- instantiates Eigen code using small anonymous wrapper functions */
- py::class_<Type> matrix(m, name, parent);
- matrix
- /* Constructors */
- .def(py::init<>())
- .def(py::init<size_t, size_t>())
- // .def("__init__", [](Type &m, Scalar f) {
- // new (&m) Type(1, 1);
- // m(0, 0) = f;
- // })
- // .def("__init__", [](Type &m, py::buffer b) {
- // py::buffer_info info = b.request();
- // if (info.format != py::format_descriptor<Scalar>::value())
- // throw std::runtime_error("Incompatible buffer format!");
- // if (info.ndim == 1) {
- // new (&m) Type(info.shape[0], 1);
- // memcpy(m.data(), info.ptr, sizeof(Scalar) * m.size());
- // } else if (info.ndim == 2) {
- // if (info.strides[0] == sizeof(Scalar)) {
- // new (&m) Type(info.shape[0], info.shape[1]);
- // memcpy(m.data(), info.ptr, sizeof(Scalar) * m.size());
- // } else {
- // new (&m) Type(info.shape[1], info.shape[0]);
- // memcpy(m.data(), info.ptr, sizeof(Scalar) * m.size());
- // m.transposeInPlace();
- // }
- // } else {
- // throw std::runtime_error("Incompatible buffer dimension!");
- // }
- // })
- /* Size query functions */
- .def("size", [](const Type &m) { return m.size(); })
- .def("cols", [](const Type &m) { return m.cols(); })
- .def("rows", [](const Type &m) { return m.rows(); })
- .def("shape", [](const Type &m) { return std::tuple<int,int>(m.rows(), m.cols()); })
- /* Initialization */
- .def("setZero", [](Type &m) { m.setZero(); })
- .def("setIdentity", [](Type &m) { m.setIdentity(); })
- .def("transpose", [](Type &m) { return Type(m.transpose()); })
- .def("norm", [](Type &m) { return m.norm(); })
- /* Resizing */
- // .def("resize", [](Type &m, size_t s0, size_t s1) { m.resize(s0, s1); })
- // .def("resizeLike", [](Type &m, const Type &m2) { m.resizeLike(m2); })
- // .def("conservativeResize", [](Type &m, size_t s0, size_t s1) { m.conservativeResize(s0, s1); })
- /* Component-wise operations */
- // .def("cwiseAbs", &Type::cwiseAbs)
- // .def("cwiseAbs2", &Type::cwiseAbs2)
- // .def("cwiseSqrt", &Type::cwiseSqrt)
- // .def("cwiseInverse", &Type::cwiseInverse)
- // .def("cwiseMin", [](const Type &m1, const Type &m2) -> Type { return m1.cwiseMin(m2); })
- // .def("cwiseMax", [](const Type &m1, const Type &m2) -> Type { return m1.cwiseMax(m2); })
- // .def("cwiseMin", [](const Type &m1, Scalar s) -> Type { return m1.cwiseMin(s); })
- // .def("cwiseMax", [](const Type &m1, Scalar s) -> Type { return m1.cwiseMax(s); })
- // .def("cwiseProduct", [](const Type &m1, const Type &m2) -> Type { return m1.cwiseProduct(m2); })
- // .def("cwiseQuotient", [](const Type &m1, const Type &m2) -> Type { return m1.cwiseQuotient(m2); })
- /* Arithmetic operators (def_cast forcefully casts the result back to a
- Type to avoid type issues with Eigen's crazy expression templates) */
- .def_cast(-py::self)
- .def_cast(py::self + py::self)
- .def_cast(py::self - py::self)
- .def_cast(py::self * py::self)
- .def_cast(py::self * Scalar())
- .def_cast(Scalar() * py::self)
- // Special case, sparse * dense produces a dense matrix
- // .def("__mul__", []
- // (const Type &a, const Scalar& b)
- // {
- // return Type(a * b);
- // })
- // .def("__rmul__", [](const Type& a, const Scalar& b)
- // {
- // return Type(b * a);
- // })
- .def("__mul__", []
- (const Type &a, const Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>& b)
- {
- return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(a * b);
- })
- .def("__rmul__", [](const Type& a, const Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>& b)
- {
- return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(b * a);
- })
- .def("__mul__", []
- (const Type &a, const Eigen::DiagonalMatrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>& b)
- {
- return Type(a * b);
- })
- .def("__rmul__", [](const Type& a, const Eigen::DiagonalMatrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>& b)
- {
- return Type(b * a);
- })
- //.def(py::self * Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>())
- // .def_cast(py::self / Scalar())
- /* Arithmetic in-place operators */
- // .def_cast(py::self += py::self)
- // .def_cast(py::self -= py::self)
- // .def_cast(py::self *= py::self)
- // .def_cast(py::self *= Scalar())
- // .def_cast(py::self /= Scalar())
- /* Comparison operators */
- // .def(py::self == py::self)
- // .def(py::self != py::self)
- // .def("transposeInPlace", [](Type &m) { m.transposeInPlace(); })
- // /* Other transformations */
- // .def("transpose", [](Type &m) -> Type { return m.transpose(); })
- /* Python protocol implementations */
- .def("__repr__", [](const Type &v) {
- std::ostringstream oss;
- oss << v;
- return oss.str();
- })
- /* Static initializers */
- // .def_static("Zero", [](size_t n, size_t m) { return Type(Type::Zero(n, m)); })
- // .def_static("Ones", [](size_t n, size_t m) { return Type(Type::Ones(n, m)); })
- // .def_static("Constant", [](size_t n, size_t m, Scalar value) { return Type(Type::Constant(n, m, value)); })
- // .def_static("Identity", [](size_t n, size_t m) { return Type(Type::Identity(n, m)); })
- .def("toCOO",[](const Type& m)
- {
- Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic> t(m.nonZeros(),3);
- int count = 0;
- for (int k=0; k<m.outerSize(); ++k)
- for (typename Type::InnerIterator it(m,k); it; ++it)
- t.row(count++) << it.row(), it.col(), it.value();
- return t;
- })
- .def("fromCOO",[](Type& m, const Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>& t, int rows, int cols)
- {
- typedef Eigen::Triplet<Scalar> T;
- std::vector<T> tripletList;
- tripletList.reserve(t.rows());
- for(unsigned i=0;i<t.rows();++i)
- tripletList.push_back(T(round(t(i,0)),round(t(i,1)),t(i,2)));
- if (rows == -1)
- rows = t.col(0).maxCoeff()+1;
- if (cols == -1)
- cols = t.col(1).maxCoeff()+1;
- m.resize(rows,cols);
- m.setFromTriplets(tripletList.begin(), tripletList.end());
- }, py::arg("t"), py::arg("rows") = -1, py::arg("cols") = -1)
- .def("insert",[](Type& m, const int row, const int col, const Scalar value)
- {
- return m.insert(row,col) = value;
- }, py::arg("row"), py::arg("col"), py::arg("value"))
- .def("makeCompressed",[](Type& m)
- {
- return m.makeCompressed();
- })
- .def("diagonal", [](const Type &m) {return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(m.diagonal());} )
- ;
- return matrix;
- }
- /// Creates Python bindings for a diagonal Eigen sparse order-2 tensor (i.e. a matrix)
- template <typename Type>
- py::class_<Type> bind_eigen_diagonal_2(py::module &m, const char *name,
- py::object parent = py::object()) {
- typedef typename Type::Scalar Scalar;
- /* Many Eigen functions are templated and can't easily be referenced using
- a function pointer, thus a big portion of the binding code below
- instantiates Eigen code using small anonymous wrapper functions */
- py::class_<Type> matrix(m, name, parent);
- matrix
- /* Constructors */
- .def(py::init<>())
- //.def(py::init<size_t, size_t>())
- /* Size query functions */
- .def("size", [](const Type &m) { return m.size(); })
- .def("cols", [](const Type &m) { return m.cols(); })
- .def("rows", [](const Type &m) { return m.rows(); })
- .def("shape", [](const Type &m) { return std::tuple<int,int>(m.rows(), m.cols()); })
- /* Initialization */
- .def("setZero", [](Type &m) { m.setZero(); })
- .def("setIdentity", [](Type &m) { m.setIdentity(); })
- /* Arithmetic operators (def_cast forcefully casts the result back to a
- Type to avoid type issues with Eigen's crazy expression templates) */
- // .def_cast(-py::self)
- // .def_cast(py::self + py::self)
- // .def_cast(py::self - py::self)
- // .def_cast(py::self * py::self)
- .def_cast(py::self * Scalar())
- .def_cast(Scalar() * py::self)
- // // Special case, sparse * dense produces a dense matrix
- // .def("__mul__", []
- // (const Type &a, const Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>& b)
- // {
- // return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(a * b);
- // })
- // .def("__rmul__", [](const Type& a, const Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>& b)
- // {
- // return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(b * a);
- // })
- .def("__mul__", []
- (const Type &a, const Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>& b)
- {
- return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(a * b);
- })
- .def("__rmul__", [](const Type& a, const Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>& b)
- {
- return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(b * a);
- })
- .def("__mul__", []
- (const Type &a, const Eigen::SparseMatrix<Scalar>& b)
- {
- return Eigen::SparseMatrix<Scalar>(a * b);
- })
- .def("__rmul__", [](const Type& a, const Eigen::SparseMatrix<Scalar>& b)
- {
- return Eigen::SparseMatrix<Scalar>(b * a);
- })
- /* Python protocol implementations */
- .def("__repr__", [](const Type &/*v*/) {
- std::ostringstream oss;
- oss << "<< operator undefined for diagonal matrices";
- return oss.str();
- })
- /* Other transformations */
- ;
- return matrix;
- }
- void python_export_vector(py::module &m) {
- py::module me = m.def_submodule(
- "eigen", "Wrappers for Eigen types");
- /* Bindings for VectorXd */
- // bind_eigen_1<Eigen::VectorXd> (me, "VectorXd");
- // py::implicitly_convertible<py::buffer, Eigen::VectorXd>();
- // py::implicitly_convertible<double, Eigen::VectorXd>();
- /* Bindings for VectorXi */
- // bind_eigen_1<Eigen::VectorXi> (me, "VectorXi");
- // py::implicitly_convertible<py::buffer, Eigen::VectorXi>();
- // py::implicitly_convertible<double, Eigen::VectorXi>();
- /* Bindings for MatrixXd */
- bind_eigen_2<Eigen::MatrixXd> (me, "MatrixXd");
- //py::implicitly_convertible<py::buffer, Eigen::MatrixXd>();
- //py::implicitly_convertible<double, Eigen::MatrixXd>();
- /* Bindings for MatrixXi */
- bind_eigen_2<Eigen::MatrixXi> (me, "MatrixXi");
- // py::implicitly_convertible<py::buffer, Eigen::MatrixXi>();
- //py::implicitly_convertible<double, Eigen::MatrixXi>();
- /* Bindings for MatrixXb */
- bind_eigen_2<Eigen::Matrix<bool,Eigen::Dynamic,Eigen::Dynamic> > (me, "MatrixXb");
- /* Bindings for MatrixXuc */
- bind_eigen_2<Eigen::Matrix<unsigned char,Eigen::Dynamic,Eigen::Dynamic> > (me, "MatrixXuc");
- // py::implicitly_convertible<py::buffer, Eigen::Matrix<unsigned char,Eigen::Dynamic,Eigen::Dynamic> >();
- // py::implicitly_convertible<double, Eigen::Matrix<unsigned char,Eigen::Dynamic,Eigen::Dynamic> >();
- // /* Bindings for Vector3d */
- // auto vector3 = bind_eigen_1_3<Eigen::Vector3d>(me, "Vector3d");
- // vector3
- // .def("norm", [](const Eigen::Vector3d &v) { return v.norm(); })
- // .def("squaredNorm", [](const Eigen::Vector3d &v) { return v.squaredNorm(); })
- // .def("normalize", [](Eigen::Vector3d &v) { v.normalize(); })
- // .def("normalized", [](const Eigen::Vector3d &v) -> Eigen::Vector3d { return v.normalized(); })
- // .def("dot", [](const Eigen::Vector3d &v1, const Eigen::Vector3d &v2) { return v1.dot(v2); })
- // .def("cross", [](const Eigen::Vector3d &v1, const Eigen::Vector3d &v2) -> Eigen::Vector3d { return v1.cross(v2); })
- // .def_property("x", [](const Eigen::Vector3d &v) -> double { return v.x(); },
- // [](Eigen::Vector3d &v, double x) { v.x() = x; }, "X coordinate")
- // .def_property("y", [](const Eigen::Vector3d &v) -> double { return v.y(); },
- // [](Eigen::Vector3d &v, double y) { v.y() = y; }, "Y coordinate")
- // .def_property("z", [](const Eigen::Vector3d &v) -> double { return v.z(); },
- // [](Eigen::Vector3d &v, double z) { v.z() = z; }, "Z coordinate");
- //
- // py::implicitly_convertible<py::buffer, Eigen::Vector3d>();
- // py::implicitly_convertible<double, Eigen::Vector3d>();
- /* Bindings for SparseMatrix<double> */
- bind_eigen_sparse_2< Eigen::SparseMatrix<double> > (me, "SparseMatrixd");
- /* Bindings for SparseMatrix<int> */
- bind_eigen_sparse_2< Eigen::SparseMatrix<int> > (me, "SparseMatrixi");
- /* Bindings for DiagonalMatrix<double> */
- bind_eigen_diagonal_2< Eigen::DiagonalMatrix<double,Eigen::Dynamic,Eigen::Dynamic> > (me, "DiagonalMatrixd");
- /* Bindings for DiagonalMatrix<int> */
- bind_eigen_diagonal_2< Eigen::DiagonalMatrix<int,Eigen::Dynamic,Eigen::Dynamic> > (me, "DiagonalMatrixi");
- /* Bindings for SimplicialLLT*/
- py::class_<Eigen::SimplicialLLT<Eigen::SparseMatrix<double > >> simpliciallltsparse(me, "SimplicialLLTsparse");
- simpliciallltsparse
- .def(py::init<>())
- .def(py::init<Eigen::SparseMatrix<double>>())
- .def("info",[](const Eigen::SimplicialLLT<Eigen::SparseMatrix<double > >& s)
- {
- if (s.info() == Eigen::Success)
- return "Success";
- else
- return "Numerical Issue";
- })
- .def("analyzePattern",[](Eigen::SimplicialLLT<Eigen::SparseMatrix<double > >& s, const Eigen::SparseMatrix<double>& a) { return s.analyzePattern(a); })
- .def("factorize",[](Eigen::SimplicialLLT<Eigen::SparseMatrix<double > >& s, const Eigen::SparseMatrix<double>& a) { return s.factorize(a); })
- .def("solve",[](const Eigen::SimplicialLLT<Eigen::SparseMatrix<double > >& s, const Eigen::MatrixXd& rhs) { return Eigen::MatrixXd(s.solve(rhs)); })
- ;
- py::class_<Eigen::Affine3d > affine3d(me, "Affine3d");
- affine3d
- .def(py::init<>())
- .def("setIdentity",[](Eigen::Affine3d& a){
- return a.setIdentity();
- })
- .def("rotate",[](Eigen::Affine3d& a, double angle, Eigen::MatrixXd axis) {
- assert_is_Vector3("axis", axis);
- return a.rotate(Eigen::AngleAxisd(angle, Eigen::Vector3d(axis)));
- })
- .def("translate",[](Eigen::Affine3d& a, Eigen::MatrixXd offset) {
- assert_is_Vector3("offset", offset);
- return a.translate(Eigen::Vector3d(offset));
- })
- .def("matrix", [](Eigen::Affine3d& a) -> Eigen::MatrixXd {
- return Eigen::MatrixXd(a.matrix());
- })
- ;
- /* Bindings for Quaterniond*/
- //py::class_<Eigen::Quaterniond > quaterniond(me, "Quaterniond");
- //
- // quaterniond
- // .def(py::init<>())
- // .def(py::init<double, double, double, double>())
- // ;
- }
|