12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- import sys, os
- # Add the igl library to the modules search path
- sys.path.insert(0, os.getcwd() + "/../")
- import pyigl as igl
- from shared import TUTORIAL_SHARED_PATH, check_dependencies, print_usage
- dependencies = ["copyleft", "viewer"]
- check_dependencies(dependencies)
- def key_down(viewer, key, modifier):
- if key == ord('1'):
- viewer.data.clear()
- viewer.data.set_mesh(V, F)
- elif key == ord('2'):
- viewer.data.clear()
- viewer.data.set_mesh(SV, SF)
- elif key == ord('3'):
- viewer.data.clear()
- viewer.data.set_mesh(BV, BF)
- return True
- if __name__ == "__main__":
- keys = {"1": "show original mesh",
- "2": "show marching cubes contour of signed distance",
- "3": "show marching cubes contour of indicator function"}
- print_usage(keys)
- V = igl.eigen.MatrixXd()
- F = igl.eigen.MatrixXi()
- # Read in inputs as double precision floating point meshes
- igl.read_triangle_mesh(TUTORIAL_SHARED_PATH + "armadillo.obj", V, F)
- # number of vertices on the largest side
- s = 50
- Vmin = V.colwiseMinCoeff()
- Vmax = V.colwiseMaxCoeff()
- h = (Vmax - Vmin).maxCoeff() / s
- res = (s * ((Vmax - Vmin) / (Vmax - Vmin).maxCoeff())).castint()
- def lerp(res, Vmin, Vmax, di, d):
- return Vmin[d] + di / (res[d] - 1) * (Vmax[d] - Vmin[d])
- # create grid
- print("Creating grid...")
- GV = igl.eigen.MatrixXd(res[0] * res[1] * res[2], 3)
- for zi in range(res[2]):
- z = lerp(res, Vmin, Vmax, zi, 2)
- for yi in range(res[1]):
- y = lerp(res, Vmin, Vmax, yi, 1)
- for xi in range(res[0]):
- x = lerp(res, Vmin, Vmax, xi, 0)
- GV.setRow(xi + res[0] * (yi + res[1] * zi), igl.eigen.MatrixXd([[x, y, z]]))
- # compute values
- print("Computing distances...")
- S = igl.eigen.MatrixXd()
- B = igl.eigen.MatrixXd()
- I = igl.eigen.MatrixXi()
- C = igl.eigen.MatrixXd()
- N = igl.eigen.MatrixXd()
- igl.signed_distance(GV, V, F, igl.SIGNED_DISTANCE_TYPE_PSEUDONORMAL, S, I, C, N)
- # Convert distances to binary inside-outside data --> aliasing artifacts
- B = S.copy()
- for e in range(B.rows()):
- if B[e] > 0:
- B[e] = 1
- else:
- if B[e] < 0:
- B[e] = -1
- else:
- B[e] = 0
- print("Marching cubes...")
- SV = igl.eigen.MatrixXd()
- BV = igl.eigen.MatrixXd()
- SF = igl.eigen.MatrixXi()
- BF = igl.eigen.MatrixXi()
- igl.copyleft.marching_cubes(S, GV, res[0], res[1], res[2], SV, SF)
- igl.copyleft.marching_cubes(B, GV, res[0], res[1], res[2], BV, BF)
- # Plot the generated mesh
- viewer = igl.viewer.Viewer()
- viewer.data.set_mesh(SV, SF)
- viewer.callback_key_down = key_down
- viewer.launch()
|