123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- from __future__ import print_function
- # Add the igl library to the modules search path
- import sys, os
- sys.path.insert(0, os.getcwd() + "/../")
- import pyigl as igl
- from iglhelpers import e2p
- import math
- TUTORIAL_SHARED_PATH = "../../tutorial/shared/"
- global V, F, T, tree, FN, VN, EN, E, EMAP, max_distance, slice_z, overlay
- V = igl.eigen.MatrixXd()
- F = igl.eigen.MatrixXi()
- T = igl.eigen.MatrixXi()
- tree = igl.AABB()
- FN = igl.eigen.MatrixXd()
- VN = igl.eigen.MatrixXd()
- EN = igl.eigen.MatrixXd()
- E = igl.eigen.MatrixXi()
- EMAP = igl.eigen.MatrixXi()
- max_distance = 1
- slice_z = 0.5
- overlay = False
- viewer = igl.viewer.Viewer()
- def update_visualization(viewer):
- global V, F, T, tree, FN, VN, EN, E, EMAP, max_distance, slice_z, overlay
- plane = igl.eigen.MatrixXd([0.0, 0.0, 1.0, -((1-slice_z) * V.col(2).minCoeff() + slice_z * V.col(2).maxCoeff())])
- V_vis = igl.eigen.MatrixXd()
- F_vis = igl.eigen.MatrixXi()
- # Extract triangle mesh slice through volume mesh and subdivide nasty triangles
- J = igl.eigen.MatrixXi()
- bary = igl.eigen.SparseMatrixd()
- igl.slice_tets(V, T, plane, V_vis, F_vis, J, bary)
- max_l = 0.03
- # while True:
- # l = igl.eigen.MatrixXd()
- # igl.edge_lengths(V_vis, F_vis, l)
- # l /= (V_vis.colwise().maxCoeff() - V_vis.colwise().minCoeff()).norm()
- #
- # if l.maxCoeff() < max_l:
- # break
- #
- # bad = e2p(l.rowwiseMaxCoeff())
- # bad = bad > max_l
- # F_vis_bad = igl.eigen.MatrixXi()
- # F_vis_good = igl.eigen.MatrixXi()
- # igl::slice_mask(F_vis, bad, 1, F_vis_bad);
- # igl::slice_mask(F_vis, (bad!=true).eval(), 1, F_vis_good);
- # igl.upsample(V_vis, F_vis_bad)
- # F_vis = igl.cat(1, F_vis_bad, F_vis_good)
- # #Compute signed distance
- # S_vis = igl.eigen.MatrixXd()
- # I = igl.eigen.MatrixXi()
- # N = igl.eigen.MatrixXd()
- # C = igl.eigen.MatrixXd()
- # # Bunny is a watertight mesh so use pseudonormal for signing
- # igl.signed_distance_pseudonormal(V_vis, V, F, tree, FN, VN, EN, EMAP, S_vis, I, C, N)
- # # push to [0,1] range
- # S_vis.array() = 0.5*(S_vis.array()/max_distance)+0.5;
- # C_vis = igl.eigen.MatrixXi()
- # # color without normalizing
- # igl.parula(S_vis, False, C_vis)
- # const auto & append_mesh = [&C_vis,&F_vis,&V_vis](const Eigen::MatrixXd & V, const Eigen::MatrixXi & F, const RowVector3d & color)
- # F_vis.conservativeResize(F_vis.rows() + F.rows(), 3)
- # F_vis.bottomRows(F.rows()) = F.array() + V_vis.rows()
- # V_vis.conservativeResize(V_vis.rows() + V.rows(), 3)
- # V_vis.bottomRows(V.rows()) = V
- # C_vis.conservativeResize(C_vis.rows() + V.rows(), 3)
- # C_vis.bottomRows(V.rows()).rowwise() = color
- # if overlay:
- # append_mesh(V, F, RowVector3d(0.8,0.8,0.8))
- viewer.data.clear()
- viewer.data.set_mesh(V_vis, F_vis)
- # viewer.data.set_colors(C_vis)
- viewer.core.lighting_factor = overlay
- def key_down(viewer, key, modifier):
- global slice_z, overlay
- if key == ord(' '):
- overlay = not overlay
- elif key == ord('.'):
- slice_z = min(slice_z + 0.01, 0.99)
- elif key == ord(','):
- slice_z = max(slice_z - 0.01, 0.01)
- else:
- return False
- update_visualization(viewer)
- return True
- print("Press [space] to toggle showing surface.")
- print("Press '.'/',' to push back/pull forward slicing plane.")
- #Load mesh: (V,T) tet-mesh of convex hull, F contains original surface triangles
- igl.readMESH(TUTORIAL_SHARED_PATH + "bunny.mesh", V, T, F);
- #Call to point_mesh_squared_distance to determine bounds
- sqrD = igl.eigen.MatrixXd()
- I = igl.eigen.MatrixXi()
- C = igl.eigen.MatrixXd()
- igl.point_mesh_squared_distance(V, V, F, sqrD, I, C)
- max_distance = math.sqrt(sqrD.maxCoeff())
- #Precompute signed distance AABB tree
- tree.init(V, F)
- #Precompute vertex, edge and face normals
- igl.per_face_normals(V, F, FN)
- igl.per_vertex_normals(V, F, igl.PER_VERTEX_NORMALS_WEIGHTING_TYPE_ANGLE, FN, VN)
- igl.per_edge_normals(V, F, igl.PER_EDGE_NORMALS_WEIGHTING_TYPE_UNIFORM, FN, EN, E, EMAP)
- #Plot the generated mesh
- update_visualization(viewer);
- viewer.callback_key_down = key_down
- viewer.core.show_lines = False
- viewer.launch()
|