flip_avoiding_line_search.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320
  1. // This file is part of libigl, a simple c++ geometry processing library.
  2. //
  3. // Copyright (C) 2016 Michael Rabinovich
  4. //
  5. // This Source Code Form is subject to the terms of the Mozilla Public License
  6. // v. 2.0. If a copy of the MPL was not distributed with this file, You can
  7. // obtain one at http://mozilla.org/MPL/2.0/.
  8. #include "flip_avoiding_line_search.h"
  9. #include "line_search.h"
  10. #include "PI.h"
  11. #include <Eigen/Dense>
  12. #include <vector>
  13. namespace igl
  14. {
  15. namespace flip_avoiding
  16. {
  17. //---------------------------------------------------------------------------
  18. // x - array of size 3
  19. // In case 3 real roots: => x[0], x[1], x[2], return 3
  20. // 2 real roots: x[0], x[1], return 2
  21. // 1 real root : x[0], x[1] ± i*x[2], return 1
  22. // http://math.ivanovo.ac.ru/dalgebra/Khashin/poly/index.html
  23. IGL_INLINE int SolveP3(std::vector<double>& x,double a,double b,double c)
  24. { // solve cubic equation x^3 + a*x^2 + b*x + c
  25. using namespace std;
  26. double a2 = a*a;
  27. double q = (a2 - 3*b)/9;
  28. double r = (a*(2*a2-9*b) + 27*c)/54;
  29. double r2 = r*r;
  30. double q3 = q*q*q;
  31. double A,B;
  32. if(r2<q3)
  33. {
  34. double t=r/sqrt(q3);
  35. if( t<-1) t=-1;
  36. if( t> 1) t= 1;
  37. t=acos(t);
  38. a/=3; q=-2*sqrt(q);
  39. x[0]=q*cos(t/3)-a;
  40. x[1]=q*cos((t+(2*igl::PI))/3)-a;
  41. x[2]=q*cos((t-(2*igl::PI))/3)-a;
  42. return(3);
  43. }
  44. else
  45. {
  46. A =-pow(fabs(r)+sqrt(r2-q3),1./3);
  47. if( r<0 ) A=-A;
  48. B = A==0? 0 : q/A;
  49. a/=3;
  50. x[0] =(A+B)-a;
  51. x[1] =-0.5*(A+B)-a;
  52. x[2] = 0.5*sqrt(3.)*(A-B);
  53. if(fabs(x[2])<1e-14)
  54. {
  55. x[2]=x[1]; return(2);
  56. }
  57. return(1);
  58. }
  59. }
  60. IGL_INLINE double get_smallest_pos_quad_zero(double a,double b, double c)
  61. {
  62. using namespace std;
  63. double t1, t2;
  64. if(std::abs(a) > 1.0e-10)
  65. {
  66. double delta_in = pow(b, 2) - 4 * a * c;
  67. if(delta_in <= 0)
  68. {
  69. return INFINITY;
  70. }
  71. double delta = sqrt(delta_in); // delta >= 0
  72. if(b >= 0) // avoid subtracting two similar numbers
  73. {
  74. double bd = - b - delta;
  75. t1 = 2 * c / bd;
  76. t2 = bd / (2 * a);
  77. }
  78. else
  79. {
  80. double bd = - b + delta;
  81. t1 = bd / (2 * a);
  82. t2 = (2 * c) / bd;
  83. }
  84. assert (std::isfinite(t1));
  85. assert (std::isfinite(t2));
  86. if(a < 0) std::swap(t1, t2); // make t1 > t2
  87. // return the smaller positive root if it exists, otherwise return infinity
  88. if(t1 > 0)
  89. {
  90. return t2 > 0 ? t2 : t1;
  91. }
  92. else
  93. {
  94. return INFINITY;
  95. }
  96. }
  97. else
  98. {
  99. if(b == 0) return INFINITY; // just to avoid divide-by-zero
  100. t1 = -c / b;
  101. return t1 > 0 ? t1 : INFINITY;
  102. }
  103. }
  104. IGL_INLINE double get_min_pos_root_2D(const Eigen::MatrixXd& uv,
  105. const Eigen::MatrixXi& F,
  106. Eigen::MatrixXd& d,
  107. int f)
  108. {
  109. using namespace std;
  110. /*
  111. Finding the smallest timestep t s.t a triangle get degenerated (<=> det = 0)
  112. The following code can be derived by a symbolic expression in matlab:
  113. Symbolic matlab:
  114. U11 = sym('U11');
  115. U12 = sym('U12');
  116. U21 = sym('U21');
  117. U22 = sym('U22');
  118. U31 = sym('U31');
  119. U32 = sym('U32');
  120. V11 = sym('V11');
  121. V12 = sym('V12');
  122. V21 = sym('V21');
  123. V22 = sym('V22');
  124. V31 = sym('V31');
  125. V32 = sym('V32');
  126. t = sym('t');
  127. U1 = [U11,U12];
  128. U2 = [U21,U22];
  129. U3 = [U31,U32];
  130. V1 = [V11,V12];
  131. V2 = [V21,V22];
  132. V3 = [V31,V32];
  133. A = [(U2+V2*t) - (U1+ V1*t)];
  134. B = [(U3+V3*t) - (U1+ V1*t)];
  135. C = [A;B];
  136. solve(det(C), t);
  137. cf = coeffs(det(C),t); % Now cf(1),cf(2),cf(3) holds the coefficients for the polynom. at order c,b,a
  138. */
  139. int v1 = F(f,0); int v2 = F(f,1); int v3 = F(f,2);
  140. // get quadratic coefficients (ax^2 + b^x + c)
  141. const double& U11 = uv(v1,0);
  142. const double& U12 = uv(v1,1);
  143. const double& U21 = uv(v2,0);
  144. const double& U22 = uv(v2,1);
  145. const double& U31 = uv(v3,0);
  146. const double& U32 = uv(v3,1);
  147. const double& V11 = d(v1,0);
  148. const double& V12 = d(v1,1);
  149. const double& V21 = d(v2,0);
  150. const double& V22 = d(v2,1);
  151. const double& V31 = d(v3,0);
  152. const double& V32 = d(v3,1);
  153. double a = V11*V22 - V12*V21 - V11*V32 + V12*V31 + V21*V32 - V22*V31;
  154. double b = U11*V22 - U12*V21 - U21*V12 + U22*V11 - U11*V32 + U12*V31 + U31*V12 - U32*V11 + U21*V32 - U22*V31 - U31*V22 + U32*V21;
  155. double c = U11*U22 - U12*U21 - U11*U32 + U12*U31 + U21*U32 - U22*U31;
  156. return get_smallest_pos_quad_zero(a,b,c);
  157. }
  158. IGL_INLINE double get_min_pos_root_3D(const Eigen::MatrixXd& uv,
  159. const Eigen::MatrixXi& F,
  160. Eigen::MatrixXd& direc,
  161. int f)
  162. {
  163. using namespace std;
  164. /*
  165. Searching for the roots of:
  166. +-1/6 * |ax ay az 1|
  167. |bx by bz 1|
  168. |cx cy cz 1|
  169. |dx dy dz 1|
  170. Every point ax,ay,az has a search direction a_dx,a_dy,a_dz, and so we add those to the matrix, and solve the cubic to find the step size t for a 0 volume
  171. Symbolic matlab:
  172. syms a_x a_y a_z a_dx a_dy a_dz % tetrahedera point and search direction
  173. syms b_x b_y b_z b_dx b_dy b_dz
  174. syms c_x c_y c_z c_dx c_dy c_dz
  175. syms d_x d_y d_z d_dx d_dy d_dz
  176. syms t % Timestep var, this is what we're looking for
  177. a_plus_t = [a_x,a_y,a_z] + t*[a_dx,a_dy,a_dz];
  178. b_plus_t = [b_x,b_y,b_z] + t*[b_dx,b_dy,b_dz];
  179. c_plus_t = [c_x,c_y,c_z] + t*[c_dx,c_dy,c_dz];
  180. d_plus_t = [d_x,d_y,d_z] + t*[d_dx,d_dy,d_dz];
  181. vol_mat = [a_plus_t,1;b_plus_t,1;c_plus_t,1;d_plus_t,1]
  182. //cf = coeffs(det(vol_det),t); % Now cf(1),cf(2),cf(3),cf(4) holds the coefficients for the polynom
  183. [coefficients,terms] = coeffs(det(vol_det),t); % terms = [ t^3, t^2, t, 1], Coefficients hold the coeff we seek
  184. */
  185. int v1 = F(f,0); int v2 = F(f,1); int v3 = F(f,2); int v4 = F(f,3);
  186. const double& a_x = uv(v1,0);
  187. const double& a_y = uv(v1,1);
  188. const double& a_z = uv(v1,2);
  189. const double& b_x = uv(v2,0);
  190. const double& b_y = uv(v2,1);
  191. const double& b_z = uv(v2,2);
  192. const double& c_x = uv(v3,0);
  193. const double& c_y = uv(v3,1);
  194. const double& c_z = uv(v3,2);
  195. const double& d_x = uv(v4,0);
  196. const double& d_y = uv(v4,1);
  197. const double& d_z = uv(v4,2);
  198. const double& a_dx = direc(v1,0);
  199. const double& a_dy = direc(v1,1);
  200. const double& a_dz = direc(v1,2);
  201. const double& b_dx = direc(v2,0);
  202. const double& b_dy = direc(v2,1);
  203. const double& b_dz = direc(v2,2);
  204. const double& c_dx = direc(v3,0);
  205. const double& c_dy = direc(v3,1);
  206. const double& c_dz = direc(v3,2);
  207. const double& d_dx = direc(v4,0);
  208. const double& d_dy = direc(v4,1);
  209. const double& d_dz = direc(v4,2);
  210. // Find solution for: a*t^3 + b*t^2 + c*d +d = 0
  211. double a = a_dx*b_dy*c_dz - a_dx*b_dz*c_dy - a_dy*b_dx*c_dz + a_dy*b_dz*c_dx + a_dz*b_dx*c_dy - a_dz*b_dy*c_dx - a_dx*b_dy*d_dz + a_dx*b_dz*d_dy + a_dy*b_dx*d_dz - a_dy*b_dz*d_dx - a_dz*b_dx*d_dy + a_dz*b_dy*d_dx + a_dx*c_dy*d_dz - a_dx*c_dz*d_dy - a_dy*c_dx*d_dz + a_dy*c_dz*d_dx + a_dz*c_dx*d_dy - a_dz*c_dy*d_dx - b_dx*c_dy*d_dz + b_dx*c_dz*d_dy + b_dy*c_dx*d_dz - b_dy*c_dz*d_dx - b_dz*c_dx*d_dy + b_dz*c_dy*d_dx;
  212. double b = a_dy*b_dz*c_x - a_dy*b_x*c_dz - a_dz*b_dy*c_x + a_dz*b_x*c_dy + a_x*b_dy*c_dz - a_x*b_dz*c_dy - a_dx*b_dz*c_y + a_dx*b_y*c_dz + a_dz*b_dx*c_y - a_dz*b_y*c_dx - a_y*b_dx*c_dz + a_y*b_dz*c_dx + a_dx*b_dy*c_z - a_dx*b_z*c_dy - a_dy*b_dx*c_z + a_dy*b_z*c_dx + a_z*b_dx*c_dy - a_z*b_dy*c_dx - a_dy*b_dz*d_x + a_dy*b_x*d_dz + a_dz*b_dy*d_x - a_dz*b_x*d_dy - a_x*b_dy*d_dz + a_x*b_dz*d_dy + a_dx*b_dz*d_y - a_dx*b_y*d_dz - a_dz*b_dx*d_y + a_dz*b_y*d_dx + a_y*b_dx*d_dz - a_y*b_dz*d_dx - a_dx*b_dy*d_z + a_dx*b_z*d_dy + a_dy*b_dx*d_z - a_dy*b_z*d_dx - a_z*b_dx*d_dy + a_z*b_dy*d_dx + a_dy*c_dz*d_x - a_dy*c_x*d_dz - a_dz*c_dy*d_x + a_dz*c_x*d_dy + a_x*c_dy*d_dz - a_x*c_dz*d_dy - a_dx*c_dz*d_y + a_dx*c_y*d_dz + a_dz*c_dx*d_y - a_dz*c_y*d_dx - a_y*c_dx*d_dz + a_y*c_dz*d_dx + a_dx*c_dy*d_z - a_dx*c_z*d_dy - a_dy*c_dx*d_z + a_dy*c_z*d_dx + a_z*c_dx*d_dy - a_z*c_dy*d_dx - b_dy*c_dz*d_x + b_dy*c_x*d_dz + b_dz*c_dy*d_x - b_dz*c_x*d_dy - b_x*c_dy*d_dz + b_x*c_dz*d_dy + b_dx*c_dz*d_y - b_dx*c_y*d_dz - b_dz*c_dx*d_y + b_dz*c_y*d_dx + b_y*c_dx*d_dz - b_y*c_dz*d_dx - b_dx*c_dy*d_z + b_dx*c_z*d_dy + b_dy*c_dx*d_z - b_dy*c_z*d_dx - b_z*c_dx*d_dy + b_z*c_dy*d_dx;
  213. double c = a_dz*b_x*c_y - a_dz*b_y*c_x - a_x*b_dz*c_y + a_x*b_y*c_dz + a_y*b_dz*c_x - a_y*b_x*c_dz - a_dy*b_x*c_z + a_dy*b_z*c_x + a_x*b_dy*c_z - a_x*b_z*c_dy - a_z*b_dy*c_x + a_z*b_x*c_dy + a_dx*b_y*c_z - a_dx*b_z*c_y - a_y*b_dx*c_z + a_y*b_z*c_dx + a_z*b_dx*c_y - a_z*b_y*c_dx - a_dz*b_x*d_y + a_dz*b_y*d_x + a_x*b_dz*d_y - a_x*b_y*d_dz - a_y*b_dz*d_x + a_y*b_x*d_dz + a_dy*b_x*d_z - a_dy*b_z*d_x - a_x*b_dy*d_z + a_x*b_z*d_dy + a_z*b_dy*d_x - a_z*b_x*d_dy - a_dx*b_y*d_z + a_dx*b_z*d_y + a_y*b_dx*d_z - a_y*b_z*d_dx - a_z*b_dx*d_y + a_z*b_y*d_dx + a_dz*c_x*d_y - a_dz*c_y*d_x - a_x*c_dz*d_y + a_x*c_y*d_dz + a_y*c_dz*d_x - a_y*c_x*d_dz - a_dy*c_x*d_z + a_dy*c_z*d_x + a_x*c_dy*d_z - a_x*c_z*d_dy - a_z*c_dy*d_x + a_z*c_x*d_dy + a_dx*c_y*d_z - a_dx*c_z*d_y - a_y*c_dx*d_z + a_y*c_z*d_dx + a_z*c_dx*d_y - a_z*c_y*d_dx - b_dz*c_x*d_y + b_dz*c_y*d_x + b_x*c_dz*d_y - b_x*c_y*d_dz - b_y*c_dz*d_x + b_y*c_x*d_dz + b_dy*c_x*d_z - b_dy*c_z*d_x - b_x*c_dy*d_z + b_x*c_z*d_dy + b_z*c_dy*d_x - b_z*c_x*d_dy - b_dx*c_y*d_z + b_dx*c_z*d_y + b_y*c_dx*d_z - b_y*c_z*d_dx - b_z*c_dx*d_y + b_z*c_y*d_dx;
  214. double d = a_x*b_y*c_z - a_x*b_z*c_y - a_y*b_x*c_z + a_y*b_z*c_x + a_z*b_x*c_y - a_z*b_y*c_x - a_x*b_y*d_z + a_x*b_z*d_y + a_y*b_x*d_z - a_y*b_z*d_x - a_z*b_x*d_y + a_z*b_y*d_x + a_x*c_y*d_z - a_x*c_z*d_y - a_y*c_x*d_z + a_y*c_z*d_x + a_z*c_x*d_y - a_z*c_y*d_x - b_x*c_y*d_z + b_x*c_z*d_y + b_y*c_x*d_z - b_y*c_z*d_x - b_z*c_x*d_y + b_z*c_y*d_x;
  215. if (std::abs(a)<=1.e-10)
  216. {
  217. return get_smallest_pos_quad_zero(b,c,d);
  218. }
  219. b/=a; c/=a; d/=a; // normalize it all
  220. std::vector<double> res(3);
  221. int real_roots_num = SolveP3(res,b,c,d);
  222. switch (real_roots_num)
  223. {
  224. case 1:
  225. return (res[0] >= 0) ? res[0]:INFINITY;
  226. case 2:
  227. {
  228. double max_root = std::max(res[0],res[1]); double min_root = std::min(res[0],res[1]);
  229. if (min_root > 0) return min_root;
  230. if (max_root > 0) return max_root;
  231. return INFINITY;
  232. }
  233. case 3:
  234. default:
  235. {
  236. std::sort(res.begin(),res.end());
  237. if (res[0] > 0) return res[0];
  238. if (res[1] > 0) return res[1];
  239. if (res[2] > 0) return res[2];
  240. return INFINITY;
  241. }
  242. }
  243. }
  244. IGL_INLINE double compute_max_step_from_singularities(const Eigen::MatrixXd& uv,
  245. const Eigen::MatrixXi& F,
  246. Eigen::MatrixXd& d)
  247. {
  248. using namespace std;
  249. double max_step = INFINITY;
  250. // The if statement is outside the for loops to avoid branching/ease parallelizing
  251. if (uv.cols() == 2)
  252. {
  253. for (int f = 0; f < F.rows(); f++)
  254. {
  255. double min_positive_root = get_min_pos_root_2D(uv,F,d,f);
  256. max_step = std::min(max_step, min_positive_root);
  257. }
  258. }
  259. else
  260. { // volumetric deformation
  261. for (int f = 0; f < F.rows(); f++)
  262. {
  263. double min_positive_root = get_min_pos_root_3D(uv,F,d,f);
  264. max_step = std::min(max_step, min_positive_root);
  265. }
  266. }
  267. return max_step;
  268. }
  269. }
  270. }
  271. IGL_INLINE double igl::flip_avoiding_line_search(
  272. const Eigen::MatrixXi F,
  273. Eigen::MatrixXd& cur_v,
  274. Eigen::MatrixXd& dst_v,
  275. std::function<double(Eigen::MatrixXd&)> energy,
  276. double cur_energy)
  277. {
  278. using namespace std;
  279. Eigen::MatrixXd d = dst_v - cur_v;
  280. double min_step_to_singularity = igl::flip_avoiding::compute_max_step_from_singularities(cur_v,F,d);
  281. double max_step_size = std::min(1., min_step_to_singularity*0.8);
  282. return igl::line_search(cur_v,d,max_step_size, energy, cur_energy);
  283. }
  284. #ifdef IGL_STATIC_LIBRARY
  285. #endif