123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- function [ features ] = caffe_features_single_image( i_image, f_mean, net, s_layer)
- % function [ features ] = caffe_features_single_image( i_image, f_mean, net, s_layer)
- %
- % BRIEF:
- % Run a forward pass of a given net on a single image and grep features of a specified layer
- % Requires Caffe version from 17-07-2015 (hash: 6d92d8fcfe0eea9495ffbc)
- %
- % INPUT
- % i_image -- 2d or 3d matrix
- % f_mean -- The average image of your dataset. This should be the same that was used during training of the CNN model.
- % Required to be cropped to the input size of your
- % network! See caffe_load_network.m
- % net -- a previously loaded network, see caffe_load_network.m
- % s_layer -- optional (default: 'relu7'), string, specifies the layer used for feature exatraction
- %
- %% parse inputs
- if (nargin<2)
- error ( 'no mean passed');
- end
- if (nargin<3)
- error ( 'no network passed');
- end
- if (nargin<4)
- s_layer = 'relu7';
- end
-
- %% old caffe layout
- % % prepare image for caffe format
- % batch_data = zeros(i_width,i_width,3,1,'single');
- % batch_data(:,:,:,1) = caffe_prepare_image(i_image,f_mean,i_width);
- % batch_data = repmat(batch_data, [1,1,1, batch_size] );
- %
- %
- % %% grep output and adjust desired format
- % features = caffe_('get_features',{batch_data},layer);
- % features = reshape(features{1},size(features{1},1)*size(features{1},2)*size(features{1},3),size(features{1},4))';
- %
- % features = double(features(1,:)');
- %% new caffe layout
- % scale, permute dimensions, subtract mean
- data = caffe_prepare_image( i_image, f_mean );
-
- % check that network was prepared to work on single images
- tmp_netshape = net.blobs('prob').shape;
- assert ( tmp_netshape(2) == 1, 'network not reshaped for passing only a single image' );
-
- % run a single forward pass
- [~] = net.forward({data});
-
- % fetch activations from specified layer
- features = net.blobs( s_layer ).get_data();
-
- % vectorize and concatenate activation maps
- features = reshape( features, ...
- size(features,1)*size(features,2)*size(features,3), ...
- size(features,4)...
- );
-
- % convert output to double precision
- features = double(features);
- end
|