plot1dExampleRegression.m 1.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. myData = [ 0.2; 0.8];
  2. % create l1-normalized 'histograms'
  3. myData = cat(2,myData , 1-myData)';
  4. myValues = [1,2];
  5. % init new GPHIKRegression object
  6. myGPHIKRegression = GPHIKRegression ( 'verbose', 'false', ...
  7. 'optimization_method', 'none', 'varianceApproximation', 'approximate_fine',...
  8. 'nrOfEigenvaluesToConsiderForVarApprox',2,...
  9. 'uncertaintyPredictionForClassification', true ...
  10. );
  11. % run train method
  12. myGPHIKRegression.train( myData, myValues );
  13. myDataTest = 0:0.01:1;
  14. % create l1-normalized 'histograms'
  15. myDataTest = cat(1, myDataTest, 1-myDataTest)';
  16. scores = zeros(size(myDataTest,1),1);
  17. uncertainties = zeros(size(myDataTest,1),1);
  18. for i=1:size(myDataTest,1)
  19. example = myDataTest(i,:);
  20. [ scores(i), uncertainties(i)] = myGPHIKRegression.estimate( example );
  21. end
  22. figure;
  23. hold on;
  24. %#initialize x array
  25. x=0:0.01:1;
  26. %#create first curve
  27. uncLower=scores-uncertainties;
  28. %#create second curve
  29. uncUpper=scores+uncertainties;
  30. %#create polygon-like x values for plotting
  31. X=[x,fliplr(x)];
  32. %# concatenate y-values accordingly
  33. Y=[uncLower',fliplr(uncUpper')];
  34. %#plot filled area
  35. fill(X,Y,'y');
  36. plot ( x,scores,'rx');
  37. % clean up and delete object
  38. myGPHIKRegression.delete();
  39. clear ( 'myGPHIKRegression' );