1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- myData = [ 0.2; 0.8];
- % create l1-normalized 'histograms'
- myData = cat(2,myData , 1-myData)';
- myValues = [1,2];
- % init new GPHIKRegression object
- myGPHIKRegression = GPHIKRegression ( 'verbose', 'false', ...
- 'optimization_method', 'none', 'varianceApproximation', 'approximate_fine',...
- 'nrOfEigenvaluesToConsiderForVarApprox',2,...
- 'uncertaintyPredictionForClassification', true ...
- );
- % run train method
- myGPHIKRegression.train( myData, myValues );
- myDataTest = 0:0.01:1;
- % create l1-normalized 'histograms'
- myDataTest = cat(1, myDataTest, 1-myDataTest)';
- scores = zeros(size(myDataTest,1),1);
- uncertainties = zeros(size(myDataTest,1),1);
- for i=1:size(myDataTest,1)
- example = myDataTest(i,:);
- [ scores(i), uncertainties(i)] = myGPHIKRegression.estimate( example );
- end
- figure;
- hold on;
- %#initialize x array
- x=0:0.01:1;
- %#create first curve
- uncLower=scores-uncertainties;
- %#create second curve
- uncUpper=scores+uncertainties;
- %#create polygon-like x values for plotting
- X=[x,fliplr(x)];
- %# concatenate y-values accordingly
- Y=[uncLower',fliplr(uncUpper')];
- %#plot filled area
- fill(X,Y,'y');
- plot ( x,scores,'rx');
- % clean up and delete object
- myGPHIKRegression.delete();
- clear ( 'myGPHIKRegression' );
|