123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- [train0]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run0.train
- classselection_train = "*"
- examples_train = seq * 100
- [test0]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run0.test
- classselection_test = "*"
- examples_test = seq * 50
- [train1]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run1.train
- classselection_train = "*"
- examples_train = seq * 100
- [test1]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run1.test
- classselection_test = "*"
- examples_test = seq * 50
- [train2]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run2.train
- classselection_train = "*"
- examples_train = seq * 100
- [test2]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run2.test
- classselection_test = "*"
- examples_test = seq * 50
- [train3]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run3.train
- classselection_train = "*"
- examples_train = seq * 100
- [test3]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run3.test
- classselection_test = "*"
- examples_test = seq * 50
- [train4]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run4.train
- classselection_train = "*"
- examples_train = seq * 100
- [test4]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run4.test
- classselection_test = "*"
- examples_test = seq * 50
- [train5]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run5.train
- classselection_train = "*"
- examples_train = seq * 100
- [test5]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run5.test
- classselection_test = "*"
- examples_test = seq * 50
- [train6]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run6.train
- classselection_train = "*"
- examples_train = seq * 100
- [test6]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run6.test
- classselection_test = "*"
- examples_test = seq * 50
- [train7]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run7.train
- classselection_train = "*"
- examples_train = seq * 100
- [test7]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run7.test
- classselection_test = "*"
- examples_test = seq * 50
- [train8]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run8.train
- classselection_train = "*"
- examples_train = seq * 100
- [test8]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run8.test
- classselection_test = "*"
- examples_test = seq * 50
- [train9]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run9.train
- classselection_train = "*"
- examples_train = seq * 100
- [test9]
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/run9.test
- classselection_test = "*"
- examples_test = seq * 50
- [cache]
- #root = "/home/rodner/3rdparty/imagenetBOF/niceFeatures/"
- root = "/home/luetz/data/feature-storage/15Scenes/niceFeatures/"
- [GP_IL]
- trainExPerClass = 1
- num_runs = 10
- do_classification = true
- incrementalAddSize = 3
- nrOfIncrements = 30
- [main]
- # extension of all files in the cache
- ext = ".feat"
- queryStrategy = gpPredVar
- [GPHIKClassifier]
- noise = 0.0000001
- # no uncertainty for standard classification
- uncertaintyPredictionForClassification = false
- #--define the uncertainty prediction scheme--
- # standatd predictive variance
- #uncertaintyPrediction = pred_variance
- # use the heuristic as proposed by Kapoor et al.
- #uncertaintyPrediction = heuristic
- # no classification uncertainty at all?
- #uncertaintyPrediction = none
- #--define the computation scheme for the predictive variance, if needed--
- #if we do not need any predictive variance for this experiment
- #varianceApproximation = none
- # predictive variance approximation useful for sparse features - really fast
- #varianceApproximation = approximate_rough
- # predictive variance approximation with eigenvectors (finer)
- varianceApproximation = approximate_fine
- nrOfEigenvaluesToConsiderForVarApprox = 2
- #exact computation of predictive variance
- #varianceApproximation = exact
- #--define the optimization method--
- optimization_method = none
- #optimization_method = downhillsimplex
- parameter_lower_bound = 1.0
- parameter_upper_bound = 1.0
- #--stuff for the IterativeLinearSolver--
- #ils_verbose = true
|