AL_predVar_fine.conf 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. [train0]
  2. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run0.train
  3. classselection_train = "*"
  4. examples_train = seq * 100
  5. [test0]
  6. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run0.test
  7. classselection_test = "*"
  8. examples_test = seq * 50
  9. [train1]
  10. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run1.train
  11. classselection_train = "*"
  12. examples_train = seq * 100
  13. [test1]
  14. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run1.test
  15. classselection_test = "*"
  16. examples_test = seq * 50
  17. [train2]
  18. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run2.train
  19. classselection_train = "*"
  20. examples_train = seq * 100
  21. [test2]
  22. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run2.test
  23. classselection_test = "*"
  24. examples_test = seq * 50
  25. [train3]
  26. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run3.train
  27. classselection_train = "*"
  28. examples_train = seq * 100
  29. [test3]
  30. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run3.test
  31. classselection_test = "*"
  32. examples_test = seq * 50
  33. [train4]
  34. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run4.train
  35. classselection_train = "*"
  36. examples_train = seq * 100
  37. [test4]
  38. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run4.test
  39. classselection_test = "*"
  40. examples_test = seq * 50
  41. [train5]
  42. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run5.train
  43. classselection_train = "*"
  44. examples_train = seq * 100
  45. [test5]
  46. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run5.test
  47. classselection_test = "*"
  48. examples_test = seq * 50
  49. [train6]
  50. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run6.train
  51. classselection_train = "*"
  52. examples_train = seq * 100
  53. [test6]
  54. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run6.test
  55. classselection_test = "*"
  56. examples_test = seq * 50
  57. [train7]
  58. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run7.train
  59. classselection_train = "*"
  60. examples_train = seq * 100
  61. [test7]
  62. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run7.test
  63. classselection_test = "*"
  64. examples_test = seq * 50
  65. [train8]
  66. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run8.train
  67. classselection_train = "*"
  68. examples_train = seq * 100
  69. [test8]
  70. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run8.test
  71. classselection_test = "*"
  72. examples_test = seq * 50
  73. [train9]
  74. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run9.train
  75. classselection_train = "*"
  76. examples_train = seq * 100
  77. [test9]
  78. dataset = /home/luetz/data/images/15Scenes/imagesScaled/run9.test
  79. classselection_test = "*"
  80. examples_test = seq * 50
  81. [cache]
  82. #root = "/home/rodner/3rdparty/imagenetBOF/niceFeatures/"
  83. root = "/home/luetz/data/feature-storage/15Scenes/niceFeatures/"
  84. [GP_IL]
  85. trainExPerClass = 1
  86. num_runs = 10
  87. do_classification = true
  88. incrementalAddSize = 3
  89. nrOfIncrements = 30
  90. [main]
  91. # extension of all files in the cache
  92. ext = ".feat"
  93. queryStrategy = gpPredVar
  94. [GPHIKClassifier]
  95. noise = 0.0000001
  96. # no uncertainty for standard classification
  97. uncertaintyPredictionForClassification = false
  98. #--define the uncertainty prediction scheme--
  99. # standatd predictive variance
  100. #uncertaintyPrediction = pred_variance
  101. # use the heuristic as proposed by Kapoor et al.
  102. #uncertaintyPrediction = heuristic
  103. # no classification uncertainty at all?
  104. #uncertaintyPrediction = none
  105. #--define the computation scheme for the predictive variance, if needed--
  106. #if we do not need any predictive variance for this experiment
  107. #varianceApproximation = none
  108. # predictive variance approximation useful for sparse features - really fast
  109. #varianceApproximation = approximate_rough
  110. # predictive variance approximation with eigenvectors (finer)
  111. varianceApproximation = approximate_fine
  112. nrOfEigenvaluesToConsiderForVarApprox = 2
  113. #exact computation of predictive variance
  114. #varianceApproximation = exact
  115. #--define the optimization method--
  116. optimization_method = none
  117. #optimization_method = downhillsimplex
  118. parameter_lower_bound = 1.0
  119. parameter_upper_bound = 1.0
  120. #--stuff for the IterativeLinearSolver--
  121. #ils_verbose = true