12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152 |
- [traintest]
- #dataset = /home/dbv/bilder/15Scenes/imagesScaled/
- dataset = /home/luetz/data/images/15Scenes/imagesScaled/
- classselection_train = "*"
- classselection_test = "*"
- examples_train = random * 100
- examples_test = random * 50
- [cache]
- #root = "/home/rodner/3rdparty/imagenetBOF/niceFeatures/"
- root = "/home/luetz/data/feature-storage/15Scenes/niceFeatures/"
- [GP_IL]
- trainExPerClass = 10
- num_runs = 10
- do_classification = true
- incrementalAddSize = 1
- nrOfIncrements = 50
- [main]
- # extension of all files in the cache
- ext = ".feat"
- [GPHIKClassifier]
- noise = 0.01
- parameter_lower_bound = 0.5
- parameter_upper_bound = 2.0
- #--define the uncertainty prediction scheme--
- # standatd predictive variance
- #uncertaintyPrediction = pred_variance
- # use the heuristic as proposed by Kapoor et al.
- uncertaintyPrediction = heuristic
- # no classification uncertainty at all?
- #uncertaintyPrediction = none
- #--define the computation scheme for the predictive variance, if needed--
- #if we do not need any predictive variance for this experiment
- #varianceApproximation = none
- # predictive variance approximation useful for sparse features - really fast
- varianceApproximation = approximate_rough
- # predictive variance approximation with eigenvectors (finer)
- #varianceApproximation = approximate_fine
- #nrOfEigenvaluesToConsiderForVarApprox = 2
- #exact computation of predictive variance
- #varianceApproximation = exact
- #--define the optimization method--
- #optimization_method = none
- optimization_method = downhillsimplex
- #--stuff for the IterativeLinearSolver--
- #ils_verbose = true
|