GP_IL_New_Examples.conf 1.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. [traintest]
  2. #dataset = /home/dbv/bilder/15Scenes/imagesScaled/
  3. dataset = /home/luetz/data/images/15Scenes/imagesScaled/
  4. classselection_train = "*"
  5. classselection_test = "*"
  6. examples_train = random * 100
  7. examples_test = random * 50
  8. [cache]
  9. #root = "/home/rodner/3rdparty/imagenetBOF/niceFeatures/"
  10. root = "/home/luetz/data/feature-storage/15Scenes/niceFeatures/"
  11. [GP_IL]
  12. trainExPerClass = 10
  13. num_runs = 10
  14. do_classification = true
  15. incrementalAddSize = 1
  16. nrOfIncrements = 50
  17. [main]
  18. # extension of all files in the cache
  19. ext = ".feat"
  20. [GPHIKClassifier]
  21. noise = 0.01
  22. parameter_lower_bound = 0.5
  23. parameter_upper_bound = 2.0
  24. #--define the uncertainty prediction scheme--
  25. # standatd predictive variance
  26. #uncertaintyPrediction = pred_variance
  27. # use the heuristic as proposed by Kapoor et al.
  28. uncertaintyPrediction = heuristic
  29. # no classification uncertainty at all?
  30. #uncertaintyPrediction = none
  31. #--define the computation scheme for the predictive variance, if needed--
  32. #if we do not need any predictive variance for this experiment
  33. #varianceApproximation = none
  34. # predictive variance approximation useful for sparse features - really fast
  35. varianceApproximation = approximate_rough
  36. # predictive variance approximation with eigenvectors (finer)
  37. #varianceApproximation = approximate_fine
  38. #nrOfEigenvaluesToConsiderForVarApprox = 2
  39. #exact computation of predictive variance
  40. #varianceApproximation = exact
  41. #--define the optimization method--
  42. #optimization_method = none
  43. optimization_method = downhillsimplex
  44. #--stuff for the IterativeLinearSolver--
  45. #ils_verbose = true