123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- /**
- * @file testImageNetBinary.cpp
- * @brief perform ImageNet tests with binary classification
- * @author Erik Rodner
- * @date 01/04/2012
- */
- #include <core/basics/Config.h>
- #ifdef NICE_USELIB_MATIO
- #include <core/matlabAccess/MatFileIO.h>
- //----------
- #include <vislearning/cbaselib/ClassificationResults.h>
- #include <vislearning/baselib/ProgressBar.h>
- #include <vislearning/matlabAccessHighLevel/ImageNetData.h>
- //----------
- #include <gp-hik-core/FeatureMatrixT.h>
- #include <gp-hik-core/tools.h>
- using namespace std;
- using namespace NICE;
- using namespace OBJREC;
- /**
- test the basic functionality of fast-hik hyperparameter optimization
- */
- int main (int argc, char **argv)
- {
- std::set_terminate(__gnu_cxx::__verbose_terminate_handler);
- Config conf ( argc, argv );
- string resultsfile = conf.gS("main", "results", "results.txt" );
- int positiveClass = conf.gI("main", "positive_class");
- cerr << "Positive class is " << positiveClass << endl;
-
- sparse_t data;
- NICE::Vector yl;
- cerr << "Reading ImageNet data ..." << endl;
- bool imageNetLocal = conf.gB("main", "imageNetLocal" , false);
- string imageNetPath;
- if (imageNetLocal)
- imageNetPath = "/users2/rodner/data/imagenet/devkit-1.0/";
- else
- imageNetPath = "/home/dbv/bilder/imagenet/devkit-1.0/";
- ImageNetData imageNet ( imageNetPath + "demo/" );
- imageNet.getBatchData ( data, yl, "train", "training" );
- uint n = yl.size();
-
- cerr << "Performing hyperparameter optimization ... " << endl;
- set<int> positives;
- set<int> negatives;
- map< int, set<int> > mysets;
- for ( uint i = 0 ; i < n; i++ )
- mysets[ yl[i] ].insert ( i );
- if ( mysets[ positiveClass ].size() == 0 )
- fthrow(Exception, "Class " << positiveClass << " is not available.");
- // add our positive examples
- for ( set<int>::const_iterator i = mysets[positiveClass].begin(); i != mysets[positiveClass].end(); i++ )
- positives.insert ( *i );
- int Nneg = conf.gI("main", "nneg", 1 );
- for ( map<int, set<int> >::const_iterator k = mysets.begin(); k != mysets.end(); k++ )
- {
- int classno = k->first;
- if ( classno == positiveClass )
- continue;
- const set<int> & s = k->second;
- uint ind = 0;
- for ( set<int>::const_iterator i = s.begin(); (i != s.end() && ind < Nneg); i++,ind++ )
- negatives.insert ( *i );
- }
- cerr << "Number of positive examples: " << positives.size() << endl;
- cerr << "Number of negative examples: " << negatives.size() << endl;
-
- map<int, int> examples;
- Vector y ( yl.size() );
- int ind = 0;
- for ( uint i = 0 ; i < yl.size(); i++ )
- {
- if (positives.find(i) != positives.end()) {
- y[ examples.size() ] = 1.0;
- examples.insert( pair<int, int> ( i, ind ) );
- ind++;
- } else if ( negatives.find(i) != negatives.end() ) {
- y[ examples.size() ] = -1.0;
- examples.insert( pair<int, int> ( i, ind ) );
- ind++;
- }
- }
- y.resize( examples.size() );
- cerr << "Examples: " << examples.size() << endl;
- cerr << "Putting everything in a feature matrix structure ..." << endl;
- FeatureMatrixT<double> fm ( data, examples, 1000 );
-
- cerr << "Writing file ..." << endl;
- ofstream ofs ( "train.txt", ios::out );
- if ( !ofs.good() )
- fthrow(Exception, "Unable to write to train.txt" );
- // writing features
- for ( uint i = 0 ; i < fm.get_n(); i++ )
- {
- ofs << (y[i] == 1.0) ? 1 : 0;
- for ( uint k = 0 ; k < fm.get_d(); k++ )
- {
- double val = fm(k,i);
- if ( val != 0 )
- {
- ofs << " " << k+1 << ":" << val;
- }
- }
- ofs << endl;
- }
- ofs.close();
- // ------------------------------ TESTING ------------------------------
- cerr << "Reading ImageNet test data files (takes some seconds)..." << endl;
- imageNet.preloadData ( "val", "testing" );
- imageNet.loadExternalLabels ( imageNetPath + "data/ILSVRC2010_validation_ground_truth.txt" );
- ofstream ofs_test ( "test.txt", ios::out );
- if ( !ofs_test.good() )
- fthrow(Exception, "Unable to write to test.txt" );
- for ( uint i = 0 ; i < (uint)imageNet.getNumPreloadedExamples(); i++ )
- {
- const SparseVector & svec = imageNet.getPreloadedExample ( i );
- int classno_groundtruth = (((int)imageNet.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- ofs_test << ( classno_groundtruth );
- for ( SparseVector::const_iterator k = svec.begin(); k != svec.end(); k++ )
- ofs_test << " " << k->first+1 << ":" << k->second;
- ofs_test << endl;
- }
- ofs_test.close();
- return 0;
- }
- #else
- int main (int argc, char **argv)
- {
- std::cerr << "MatIO library is missing in your system - this program will have no effect. " << std::endl;
- }
- #endif
|