123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240 |
- /**
- * @file SemSegContextTree.h
- * @brief Context Trees -> Combination of decision tree and context information
- * @author Björn Fröhlich
- * @date 29.11.2011
- */
- #ifndef SemSegContextTreeINCLUDE
- #define SemSegContextTreeINCLUDE
- #include "SemanticSegmentation.h"
- #include <core/vector/VVector.h>
- #include "vislearning/features/localfeatures/LFColorWeijer.h"
- #include "objrec/segmentation/RegionSegmentationMethod.h"
- namespace OBJREC {
-
- class Operation;
- class TreeNode
- {
- public:
- /** probabilities for each class */
- std::vector<double> probs;
-
- /** left child node */
- int left;
-
- /** right child node */
- int right;
-
- /** position of feat for decision */
- Operation *feat;
-
- /** decision stamp */
- double decision;
-
- /** is the node a leaf or not */
- bool isleaf;
-
- /** distribution in current node */
- std::vector<double> dist;
-
- /** depth of the node in the tree */
- int depth;
-
- /** simple constructor */
- TreeNode():left(-1),right(-1),feat(NULL), decision(-1.0), isleaf(false){}
-
- /** standard constructor */
- TreeNode(int _left, int _right, Operation *_feat, double _decision):left(_left),right(_right),feat(_feat), decision(_decision),isleaf(false){}
- };
-
- struct Features{
- NICE::MultiChannelImageT<double> *feats;
- MultiChannelImageT<int> *cfeats;
- int cTree;
- std::vector<TreeNode> *tree;
- NICE::MultiChannelImageT<double> *integralImg;
- };
- class ValueAccess
- {
- public:
- virtual double getVal(const Features &feats, const int &x, const int &y, const int &channel) = 0;
- virtual std::string writeInfos() = 0;
- };
- class Operation
- {
- protected:
- int x1, y1, x2, y2, channel1, channel2;
- ValueAccess *values;
- public:
- virtual void set(int _x1, int _y1, int _x2, int _y2, int _channel1, int _channel2, ValueAccess *_values)
- {
- x1 = _x1;
- y1 = _y1;
- x2 = _x2;
- y2 = _y2;
- channel1 = _channel1;
- channel2 = _channel2;
- values = _values;
- }
- /**
- * @brief abstract interface for feature computation
- * @param feats features
- * @param cfeats number of tree node for each pixel
- * @param tree current tree
- * @param x current x position
- * @param y current y position
- * @return double distance
- **/
- virtual double getVal(const Features &feats, const int &x, const int &y) = 0;
- virtual Operation* clone() = 0;
- virtual std::string writeInfos() = 0;
-
- inline void getXY(const Features &feats, int &xsize, int &ysize)
- {
- xsize = feats.feats->width();
- ysize = feats.feats->height();
- }
- };
-
- /** Localization system */
- class SemSegContextTree : public SemanticSegmentation
- {
- /** Segmentation Method */
- RegionSegmentationMethod *segmentation;
-
- /** tree -> saved as vector of nodes */
- std::vector<std::vector<TreeNode> > forest;
-
- /** local features */
- LFColorWeijer *lfcw;
-
- /** number of featuretype -> currently: local and context features = 2 */
- int ftypes;
-
- /** distance between features */
- int grid;
-
- /** maximum samples for tree */
- int maxSamples;
-
- /** size for neighbourhood */
- int windowSize;
-
- /** how many feats should be considered for a split */
- int featsPerSplit;
-
- /** count samples per label */
- std::map<int,int> labelcounter;
-
- /** map of labels */
- std::map<int,int> labelmap;
-
- /** map of labels inverse*/
- std::map<int,int> labelmapback;
-
- /** scalefactor for balancing for each class */
- std::vector<double> a;
-
- /** the minimum number of features allowed in a leaf */
- int minFeats;
-
- /** maximal depth of tree */
- int maxDepth;
-
- /** operations for pairwise features */
- std::vector<Operation*> ops;
-
- /** operations for pairwise context features */
- std::vector<Operation*> cops;
-
- std::vector<ValueAccess*> calcVal;
-
- /** vector of all possible features */
- std::vector<Operation*> featsel;
-
- /** use alternative calculation for information gain */
- bool useShannonEntropy;
-
- /** Classnames */
- ClassNames classnames;
- /** train selection */
- std::set<int> forbidden_classes;
-
- /** Configfile */
- const Config *conf;
-
- /** use pixelwise labeling or regionlabeling with additional segmenation */
- bool pixelWiseLabeling;
-
- /** use Gaussian distributed features based on the feature position */
- bool useGaussian;
-
- /** Number of trees used for the forest */
- int nbTrees;
-
- public:
- /** simple constructor */
- SemSegContextTree( const NICE::Config *conf, const MultiDataset *md );
-
- /** simple destructor */
- virtual ~SemSegContextTree();
- /**
- * test a single image
- * @param ce input data
- * @param segresult segmentation results
- * @param probabilities probabilities for each pixel
- */
- void semanticseg ( CachedExample *ce, NICE::Image & segresult, NICE::MultiChannelImageT<double> & probabilities );
-
- /**
- * the main training method
- * @param md training data
- */
- void train ( const MultiDataset *md );
-
-
- /**
- * @brief computes integral image of given feats
- *
- * @param currentfeats input features
- * @param integralImage output image (must be initilized)
- * @return void
- **/
- void computeIntegralImage(const NICE::MultiChannelImageT<int> ¤tfeats, const NICE::MultiChannelImageT<int> &lfeats, NICE::MultiChannelImageT<double> &integralImage);
-
- /**
- * compute best split for current settings
- * @param feats features
- * @param currentfeats matrix with current node for each feature
- * @param labels labels for each feature
- * @param node current node
- * @param splitfeat output feature position
- * @param splitval
- * @return best information gain
- */
- double getBestSplit(std::vector<NICE::MultiChannelImageT<double> > &feats, std::vector<NICE::MultiChannelImageT<int> > ¤tfeats, std::vector<NICE::MultiChannelImageT<double> > &integralImgs, const std::vector<NICE::MatrixT<int> > &labels, int node, Operation *&splitop, double &splitval, const int &tree);
-
- /**
- * @brief computes the mean probability for a given class over all trees
- * @param x x position
- * @param y y position
- * @param channel current class
- * @param currentfeats information about the nodes
- * @return double mean value
- **/
- inline double getMeanProb(const int &x,const int &y,const int &channel, const MultiChannelImageT<int> ¤tfeats);
- };
- } // namespace
- #endif
|