123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556 |
- // Beispielhafter Aufruf: BUILD_x86_64/progs/testActiveSemanticSegmentation -config <CONFIGFILE>
- /**
- * @file testActiveSemanticSegmentation.cpp
- * @brief test semantic segmentation routines with actively selecting regions for labeling
- * @author Alexander Freytag
- * @date 27-02-2013
- */
- #ifdef NICE_USELIB_OPENMP
- #include <omp.h>
- #endif
- #include "core/basics/Config.h"
- #include "core/basics/StringTools.h"
- #include <vislearning/baselib/ICETools.h>
- #include <semseg/semseg/SemanticSegmentation.h>
- #include <semseg/semseg/SemSegLocal.h>
- #include <semseg/semseg/SemSegCsurka.h>
- #include <semseg/semseg/SemSegNovelty.h>
- #include <semseg/semseg/SemSegNoveltyBinary.h>
- #include <semseg/semseg/SemSegContextTree.h>
- #include "core/image/FilterT.h"
- #include <core/basics/ResourceStatistics.h>
- #include <fstream>
- using namespace OBJREC;
- using namespace NICE;
- using namespace std;
- void updateMatrix( const NICE::ImageT<int> & img, const NICE::ImageT<int> & gt,
- NICE::Matrix & M, const set<int> & forbidden_classes )
- {
- double subsamplex = gt.width() / ( double )img.width();
- double subsampley = gt.height() / ( double )img.height();
- for ( int y = 0 ; y < gt.height() ; y++ )
- for ( int x = 0 ; x < gt.width() ; x++ )
- {
- int xx = ( int )( x / subsamplex );
- int yy = ( int )( y / subsampley );
- if ( xx < 0 ) xx = 0;
- if ( yy < 0 ) yy = 0;
- if ( xx > img.width() - 1 ) xx = img.width() - 1;
- if ( yy > img.height() - 1 ) yy = img.height() - 1;
- int cimg = img.getPixel( xx, yy );
- int gimg = gt.getPixel( x, y );
- if ( forbidden_classes.find( gimg ) == forbidden_classes.end() )
- {
- M( gimg, cimg )++;
- }
- }
- }
- /**
- test semantic segmentation routines
- */
- int main( int argc, char **argv )
- {
- std::set_terminate( __gnu_cxx::__verbose_terminate_handler );
- Config conf( argc, argv );
-
- ResourceStatistics rs;
-
- bool show_result = conf.gB( "debug", "show_results", false );
- bool write_results = conf.gB( "debug", "write_results", false );
- bool write_results_pascal = conf.gB( "debug", "write_results_pascal", false );
- std::string resultdir = conf.gS( "debug", "resultdir", "." );
-
- //how often do we want to iterate between sem-seg and active query?
- int activeIterations = conf.gI("main", "activeIterations", 1 );
-
- if ( write_results )
- {
- cerr << "Writing Results to " << resultdir << endl;
- }
- MultiDataset md( &conf );
- const ClassNames & classNames = md.getClassNames( "train" );
- string method = conf.gS( "main", "method", "SSCsurka" );
- //currently, we only allow SemSegNovelty, because it implements addNovelExamples()
- SemanticSegmentation *semseg = NULL;
-
- Timer timer;
- timer.start();
- if ( method == "SSCsurka" )
- {
- semseg = new SemSegCsurka( &conf, &md );
- }
- else if ( method == "SSContext" )
- {
- semseg = new SemSegContextTree( &conf, &md );
- }
- else if( method == "SSNovelty" )
- {
- semseg = new SemSegNovelty( &conf, &md );
- }
- else if( method == "SSNoveltyBinary" )
- {
- semseg = new SemSegNoveltyBinary( &conf, &md );
- }
- timer.stop();
- std::cerr << "AL time for training: " << timer.getLast() << std::endl;
- const LabeledSet *testFiles = md["test"];
- NICE::Matrix M( classNames.getMaxClassno() + 1, classNames.getMaxClassno() + 1 );
- M.set( 0 );
- std::set<int> forbidden_classes;
- std::string forbidden_classes_s = conf.gS( "analysis", "forbidden_classesTrain", "" );
- classNames.getSelection( forbidden_classes_s, forbidden_classes );
-
- std::set<int> forbidden_classesForActiveLearning;
- std::string forbidden_classesForActiveLearning_s = conf.gS( "analysis", "forbidden_classesForActiveLearning", "" );
- classNames.getSelection( forbidden_classesForActiveLearning_s, forbidden_classesForActiveLearning );
-
- for (int iterationCount = 0; iterationCount < activeIterations; iterationCount++)
- {
- //TODO shouldn't we clean the confusion matrix at the beginning of each iteration?
-
- std::cerr << "SemSeg AL Iteration: " << iterationCount << std::endl;
- semseg->setIterationCountSuffix(iterationCount);
-
- // ProgressBar pb( "Semantic Segmentation Analysis" );
- //
- // pb.show();
- int fileno = 0;
- std::cerr << "start looping over all files" << std::endl;
- LOOP_ALL_S( *testFiles )
- {
- EACH_INFO( classno, info );
- std::string file = info.img();
- NICE::ImageT<int> lm;
- NICE::MultiChannelImageT<double> probabilities;
- if ( info.hasLocalizationInfo() )
- {
- const LocalizationResult *l_gt = info.localization();
- lm.resize( l_gt->xsize, l_gt->ysize );
- //lm.set( 0 );
- l_gt->calcLabeledImage( lm, classNames.getBackgroundClass() );
- }
- semseg->semanticseg( file, lm, probabilities );
- fprintf( stderr, "testSemanticSegmentation: Segmentation finished !\n" );
- //ground truth image, needed for updating the confusion matrix
- //TODO check whether this is really needed, since we computed such a label image already within SemSegNovelty
- NICE::ImageT<int> lm_gt;
- if ( info.hasLocalizationInfo() )
- {
- const LocalizationResult *l_gt = info.localization();
- lm_gt.resize( l_gt->xsize, l_gt->ysize );
- lm_gt.set( 0 );
- fprintf( stderr, "testSemanticSegmentation: Generating Labeled NICE::Image (Ground-Truth)\n" );
- l_gt->calcLabeledImage( lm_gt, classNames.getBackgroundClass() );
- }
- // // //
- // // // std::string fname = StringTools::baseName( file, false );
- // // //
- // // // if ( write_results_pascal )
- // // // {
- // // //
- // // // NICE::Image pascal_lm( lm.width(), lm.height() );
- // // // int backgroundClass = classNames.getBackgroundClass();
- // // //
- // // // for ( int y = 0 ; y < lm.height(); y++ )
- // // // for ( int x = 0 ; x < lm.width(); x++ )
- // // // {
- // // // int v = lm.getPixel( x, y );
- // // //
- // // // if ( v == backgroundClass )
- // // // pascal_lm.setPixel( x, y, 255 );
- // // // else
- // // // pascal_lm.setPixel( x, y, 255 - v - 1 );
- // // // }
- // // //
- // // // char filename[1024];
- // // //
- // // // char *format = ( char * )"pgm";
- // // // sprintf( filename, "%s/%s.%s", resultdir.c_str(), fname.c_str(), format );
- // // //
- // // // pascal_lm.write( filename );
- // // // }
- // // //
- if ( show_result || write_results )
- {
- NICE::ColorImage orig( file );
- NICE::ColorImage rgb;
- NICE::ColorImage rgb_gt;
- classNames.labelToRGB( lm, rgb );
- classNames.labelToRGB( lm_gt, rgb_gt );
- if ( write_results )
- {
- // char filename[1024];
- // char *format = ( char * )"ppm";
- // sprintf( filename, "%06d.%s", fileno, format );
- // std::string origfilename = resultdir + "/orig_" + string( filename );
- // cerr << "Writing to file " << origfilename << endl;
- // orig.write( origfilename );
- // rgb.write( resultdir + "/result_" + string( filename ) );
- // rgb_gt.write( resultdir + "/groundtruth_" + string( filename ) );
-
- std::stringstream out;
- std::vector< std::string > myList;
- StringTools::split ( Globals::getCurrentImgFN (), '/', myList );
- out << resultdir << "/" << myList.back();
- cerr << "Writing to file " << resultdir << "/"<< myList.back() << endl;
-
- std::string noveltyMethodString = conf.gS( "SemSegNovelty", "noveltyMethod", "gp-variance");
- orig.write ( out.str() + "_orig.ppm" );
- rgb.write ( out.str() + "_" + noveltyMethodString + "_result_run_" + NICE::intToString(iterationCount) + ".ppm" );
- rgb_gt.write ( out.str() + "_groundtruth.ppm" );
- }
- if ( show_result )
- {
- #ifndef NOVISUAL
- showImage( rgb, "Result" );
- showImage( rgb_gt, "Groundtruth" );
- showImage( orig, "Input" );
- #endif
- }
- }
- //#pragma omp critical
- updateMatrix( lm, lm_gt, M, forbidden_classes );
- std::cerr << M << std::endl;
- fileno++;
- // pb.update( testFiles->count() );
- } //Loop over all test images
- // pb.hide();
- //**********************************************
- // EVALUATION
- // COMPUTE CONFUSION MAT AND FINAL SCORES
- //**********************************************
- timer.start();
-
- long maxMemory;
- rs.getMaximumMemory(maxMemory);
- cerr << "Maximum memory used: " << maxMemory << " KB" << endl;
-
- double overall = 0.0;
- double sumall = 0.0;
- for ( int r = 0; r < ( int )M.rows(); r++ )
- {
- for ( int c = 0; c < ( int )M.cols(); c++ )
- {
- if ( r == c )
- overall += M( r, c );
- sumall += M( r, c );
- }
- }
- overall /= sumall;
- // normalizing M using rows
- for ( int r = 0 ; r < ( int )M.rows() ; r++ )
- {
- double sum = 0.0;
- for ( int c = 0 ; c < ( int )M.cols() ; c++ )
- sum += M( r, c );
- if ( fabs( sum ) > 1e-4 )
- for ( int c = 0 ; c < ( int )M.cols() ; c++ )
- M( r, c ) /= sum;
- }
- std::cerr << M << std::endl;
- double avg_perf = 0.0;
- int classes_trained = 0;
- for ( int r = 0 ; r < ( int )M.rows() ; r++ )
- {
- if (( classNames.existsClassno( r ) ) && ( forbidden_classes.find( r ) == forbidden_classes.end() ) )
- {
- avg_perf += M( r, r );
- double lsum = 0.0;
- for(int r2 = 0; r2 < ( int )M.rows(); r2++)
- {
- lsum += M(r,r2);
- }
- if(lsum != 0.0)
- {
- classes_trained++;
- }
- }
- }
- if ( write_results )
- {
- ofstream fout(( resultdir + "/res.txt" ).c_str(), ios::out );
- fout << "overall: " << overall << endl;
- fout << "Average Performance " << avg_perf / ( classes_trained ) << endl;
- fout << "Lower Bound " << 1.0 / classes_trained << endl;
- for ( int r = 0 ; r < ( int )M.rows() ; r++ )
- {
- if (( classNames.existsClassno( r ) ) && ( forbidden_classes.find( r ) == forbidden_classes.end() ) )
- {
- std::string classname = classNames.text( r );
- fout << classname.c_str() << ": " << M( r, r ) << endl;
- }
- }
- fout.close();
- }
- fprintf( stderr, "overall: %f\n", overall );
- fprintf( stderr, "Average Performance %f\n", avg_perf / ( classes_trained ) );
- //fprintf(stderr, "Lower Bound %f\n", 1.0 / classes_trained);
- for ( int r = 0 ; r < ( int )M.rows() ; r++ )
- {
- if (( classNames.existsClassno( r ) ) && ( forbidden_classes.find( r ) == forbidden_classes.end() ) )
- {
- std::string classname = classNames.text( r );
- fprintf( stderr, "%s: %f\n", classname.c_str(), M( r, r ) );
- }
- }
-
- timer.stop();
- std::cout << "AL time for evaluation: " << timer.getLastAbsolute() << std::endl;
-
- //**********************************************
- // READ QUERY SCORE IMAGES
- // AND SELECT THE REGION TO BE LABELED
- //**********************************************
- //NOTE this is not needed anymore, since we store everything within SemSegNovelty
- //However, it is still needed if we use the NN-classifier for the feature learning approach
-
- // string alSection = "SemSegNovelty";
- // std::string noveltyMethodString = conf.gS( alSection, "noveltyMethod", "gp-variance");
- // std::string uncertdir = conf.gS("debug", "resultdir", "result");
- // int testWSize = conf.gI(alSection, "test_window_size", 10);
- //
- // float maxVal(0);
- // int maxValX(0);
- // int maxValY(0);
- // std::vector<ImageInfo *>::const_iterator maxValInfoIt = testFiles->begin()->second.begin();
- //
- //
- // for(LabeledSet::const_iterator outerIt = testFiles->begin() ; outerIt != testFiles->end() ; outerIt++)
- // {
- // for ( std::vector<ImageInfo *>::const_iterator imageIt = outerIt->second.begin(); imageIt != outerIt->second.end(); imageIt++ )
- // {
- // const ImageInfo & (info) = *(*imageIt);
- //
- // std::string file = info.img();
- //
- // std::stringstream dest;
- // std::vector< std::string > list2;
- // StringTools::split ( file, '/', list2 );
- // dest << uncertdir << "/" << list2.back();
- //
- // FloatImage noveltyImage;
- // noveltyImage.readRaw(dest.str() + "_run_" + NICE::intToString(iterationCount) + "_" + noveltyMethodString+".rawfloat");
- //
- // int xsize ( noveltyImage.width() );
- // int ysize ( noveltyImage.height() );
- //
- // //compute the GT-image to ensure that we only query "useful" new features, i.e., not query background or similar "forbidden" stuff
- // NICE::Image lm_gt;
- // if ( (*maxValInfoIt)->hasLocalizationInfo() )
- // {
- // const LocalizationResult *l_gt = (*maxValInfoIt)->localization();
- //
- // lm_gt.resize( l_gt->xsize, l_gt->ysize );
- // lm_gt.set( 0 );
- //
- // l_gt->calcLabeledImage( lm_gt, classNames.getBackgroundClass() );
- // }
- //
- // for ( int y = 0; y < ysize; y += testWSize )
- // {
- // for ( int x = 0; x < xsize; x += testWSize)
- // {
- // if ( (noveltyImage ( x, y ) > maxVal) && ( forbidden_classesForActiveLearning.find ( lm_gt(x, y) ) == forbidden_classesForActiveLearning.end() ) )
- // {
- // maxVal = noveltyImage ( x, y );
- // maxValX = x;
- // maxValY = y;
- // maxValInfoIt = imageIt;
- // }
- // }
- // }
- //
- // }//iterate over inner loop
- // }//iterate over testFiles
- //
- //
- // std::cerr << "maxVal: " << maxVal << " maxValX: " << maxValX << " maxValY: " << maxValY << " maxValInfo: " << (*maxValInfoIt)->img() << std::endl;
-
- //**********************************************
- // INCLUDE THE NEW INFORMATION
- // AND UPDATE THE CLASSIFIER
- //**********************************************
-
- timer.start();
- semseg->addNovelExamples();
-
- timer.stop();
- std::cout << "AL time for incremental update: " << timer.getLastAbsolute() << std::endl;
- //alternatively, we could call the destructor of semseg, and create it again, which does the same thing
- // (add new features, save the classifier, re-read it after initialization)
- //BUT this would not setup the forbidden and known classes properly!!! We should fix that!
-
- const Examples * novelExamples = semseg->getNovelExamples();
- // std::cerr << " ==================================== " << std::endl;
- // std::cerr << "new examples to be added: " << std::endl;
- // for ( uint i = 0 ; i < novelExamples->size() ; i++ )
- // {
- // std::cerr << (*novelExamples)[i].first << " "; (*novelExamples)[i].second.store(std::cerr);
- // }
- // std::cerr << " ==================================== " << std::endl;
-
- //check which classes will be added using the features from the novel region
- std::set<int> newClassNumbers;
- newClassNumbers.clear(); //just to be sure
- for ( uint i = 0 ; i < novelExamples->size() ; i++ )
- {
- if (newClassNumbers.find( (*novelExamples)[i].first /* classNumber*/) == newClassNumbers.end() )
- {
- newClassNumbers.insert( (*novelExamples)[i].first );
- }
- }
- //accept the new classes as valid information
- for (std::set<int>::const_iterator clNoIt = newClassNumbers.begin(); clNoIt != newClassNumbers.end(); clNoIt++)
- {
- if ( forbidden_classes.find ( *clNoIt ) != forbidden_classes.end() )
- {
- forbidden_classes.erase(*clNoIt);
- }
- }
-
- //NOTE Below comes the old version:
- // it is not needed anymore, since we store everything within SemSegNovelty
- //However, it is still needed if we use the NN-classifier for the feature learning approach
- // // ----------------------------------------------------
- // // therefore, we first recompute the features for the whole image and
- // //take the one which we desire
- //
- // //this is NOT efficient, but a nice and easy first step
- //
- // NICE::ColorImage img ( (*maxValInfoIt)->img() );
- //
- // MultiChannelImageT<double> feats;
- //
- // // extract features
- // LFColorWeijer * featExtract = new LFColorWeijer ( &conf );
- // featExtract->getFeats ( img, feats );
- // int featdim = feats.channels();
- // feats.addChannel(featdim);
- //
- // for (int c = 0; c < featdim; c++)
- // {
- // ImageT<double> tmp = feats[c];
- // ImageT<double> tmp2 = feats[c+featdim];
- //
- // NICE::FilterT<double, double, double>::gradientStrength (tmp, tmp2);
- // }
- // featdim += featdim;
- //
- // // compute integral images
- // for ( int c = 0; c < featdim; c++ )
- // {
- // feats.calcIntegral ( c );
- // }
- //
- // // ----------------------------------------------------
- // //now take the feature
- // NICE::Vector newFeature(featdim);
- // for ( int f = 0; f < featdim; f++ )
- // {
- // double val = feats.getIntegralValue ( maxValX - testWSize, maxValY - testWSize, maxValX + testWSize, maxValY + testWSize, f );
- // newFeature[f] = val;
- // }
- // newFeature.normalizeL1();
- //
- // NICE::Image lm_gt;
- // // take the gt class number as well
- // if ( (*maxValInfoIt)->hasLocalizationInfo() )
- // {
- // const LocalizationResult *l_gt = (*maxValInfoIt)->localization();
- //
- // lm_gt.resize( l_gt->xsize, l_gt->ysize );
- // lm_gt.set( 0 );
- //
- // l_gt->calcLabeledImage( lm_gt, classNames.getBackgroundClass() );
- // }
- // int classNoGT = lm_gt(maxValX, maxValY);
- // std::cerr << "class number GT: " << classNoGT << std::endl;
- //
- //
- // semseg->addNewExample(newFeature, classNoGT);
- //
- // //accept the new class as valid information
- // if ( forbidden_classes.find ( classNoGT ) != forbidden_classes.end() )
- // {
- // forbidden_classes.erase(classNoGT);
- // }
-
- std::cerr << "iteration finished - start the next round" << std::endl;
-
- } //iterationCount
- delete semseg;
- return 0;
- }
|