Эх сурвалжийг харах

added example program for applying ERC codebook generation on given Matlab matrices

Johannes Ruehle 11 жил өмнө
parent
commit
60fdaaf1c3

+ 391 - 0
features/simplefeatures/progs/progCodebookRandomForest.cpp

@@ -0,0 +1,391 @@
+/**
+  * @brief Extremely randomized clustering forest program for Matlab input data.
+  *
+  * @author Johannes Ruehle
+  * @date 10/05/2014
+  */
+
+#include <string>
+#include <exception>
+#include <iostream>
+#include <fstream>
+
+//----------
+#include "vislearning/features/simplefeatures/CodebookRandomForest.h"
+#include "vislearning/features/fpfeatures/VectorFeature.h"
+
+#include "vislearning/cbaselib/FeaturePool.h"
+
+#include <core/matlabAccess/MatFileIO.h>
+
+const bool verbose = false;
+const bool verboseStartEnd = true;
+
+using namespace OBJREC;
+using namespace NICE;
+using namespace std;
+
+#undef DEBUG_VERBOSE
+
+struct structCommands
+{
+    QString sFunction;
+    QString sFileTrainData;
+    QString sFileTrainDataLabels;
+    QString sConfigFile;
+
+    QString sFileStoreClassifier;   // txt file storing the config of the trained codebook rdf
+    QString sFileStoreResult;       // matlab mat file storing the generated histogram
+
+};
+
+bool loadMatlabMatrix(const std::string &sFilename, const std::string &matrix_name, NICE::Matrix &p_Matrix)
+{
+
+    NICE::MatFileIO matlab_file(sFilename, MAT_ACC_RDONLY);
+
+#ifdef DEBUG_VERBOSE
+    // Show the number of variables in the file
+    int vars_in_file = matlab_file.getNumberOfVariables();
+
+    std::cout << vars_in_file << " Variables in " << sFilename << "\n";
+
+    // Load the matrix
+    std::cout << "Loading matrix \"" << matrix_name << "\"...\n";
+#endif
+    // Check if the variable is a matrix
+    matvar_t* matrix_variable = matlab_file.getVariableViaName(matrix_name);
+    if(matrix_variable == NULL)
+    {
+        std::cout << "variable is not found in mat file.\n";
+        return false;
+    }
+
+    if(matrix_variable->rank != 2) {
+        std::cout << "Variable is not a matrix. Rank: " << matrix_variable->rank << ".\n";
+        return false;
+    }
+
+    // Read the dimensions
+    int cols = matrix_variable->dims[1];
+    int rows = matrix_variable->dims[0];
+    std::cout << "Dimensions: " << cols << " x " << rows << "\n";
+
+    // Read the matrix into a vector of vectors
+    std::vector< std::vector<double> > matrix_vecvec(rows, std::vector<double>(cols));
+    matlab_file.getFeatureMatrixViaName(matrix_vecvec, matrix_name);
+
+    // Now, we want a NICE matrix
+    //NICE::MatrixT<double> matrix(rows, cols);
+    p_Matrix.resize(rows, cols);
+    for(int i = 0; i < rows; i++) {
+        for(int j = 0; j < cols; j++) {
+            p_Matrix(i,j) = matrix_vecvec[i][j];
+        }
+    }
+
+    return true;
+}
+
+NICE::Matrix* loadMatlabVec(const std::string &sFilename, const std::string &matrix_name)
+{
+    NICE::Matrix *pMatrix = NULL;
+
+    NICE::MatFileIO *matFile = new NICE::MatFileIO(sFilename, MAT_ACC_RDONLY );
+
+    matvar_t *t = matFile->getVariableViaName(matrix_name);
+    if ( t->class_type == MAT_C_DOUBLE)
+    {
+        double *pD = (double*)( t->data );
+        pMatrix = new NICE::Matrix(pD ,  (int)t->dims[0], (int)t->dims[1], Matrix::copy );
+    }
+    else
+    {
+        std::cerr << "raw format of matlab matrix not supported" << std::endl;
+    }
+
+    Mat_VarFree(t);
+    delete matFile;
+
+    return pMatrix;
+}
+
+
+bool saveMatlabVector(const std::string &sFilename, const NICE::Vector &p_Vector, int p_iFodID)
+{
+    std::ofstream ofs;
+    ofs.open (sFilename.c_str(), std::ofstream::out);
+    if (!ofs.is_open())
+        return false;
+    ofs << p_iFodID << " #fodID" << std::endl;
+    ofs << p_Vector.size() << std::endl;
+    for(int i=0; i<p_Vector.size(); i++)
+        ofs << p_Vector[i] << std::endl;
+    ofs.close();
+
+    return true;
+}
+
+
+bool storeClassifier(const structCommands &p_Command, const OBJREC::CodebookRandomForest *p_pCodebookRandomForest)
+{
+    if( p_Command.sFileStoreClassifier.isEmpty() )
+        return false;
+
+    std::string t_sDestinationSave = p_Command.sFileStoreClassifier.toStdString();
+    std::ofstream ofs;
+    ofs.open (t_sDestinationSave.c_str(), std::ofstream::out);
+    p_pCodebookRandomForest->store( ofs );
+    ofs.close();
+
+    return true;
+
+}
+
+bool restoreClassifier(const structCommands &p_Command, OBJREC::CodebookRandomForest *p_pCodebookRandomForest)
+{
+    if( p_Command.sFileStoreClassifier.isEmpty() )
+        return false;
+
+    if (p_pCodebookRandomForest == NULL )
+        return false;
+
+    std::string t_sDestinationSave = p_Command.sFileStoreClassifier.toStdString();
+    std::ifstream ifs2;
+    ifs2.open (t_sDestinationSave.c_str() );
+    p_pCodebookRandomForest->restore( ifs2 );
+    ifs2.close();
+
+    return true;
+}
+
+bool createAndTrain( const structCommands &p_Command)
+{
+    if( p_Command.sConfigFile.isEmpty() )
+    {
+        std::cout << "no config file provided. Exiting" << std::endl;
+        return false;
+    }
+    NICE::Config t_conf = NICE::Config( p_Command.sConfigFile.toStdString() );
+
+    Matrix *t_pMatDataTrain       = loadMatlabVec( p_Command.sFileTrainData.toStdString(), "matFeatures");
+    if( t_pMatDataTrain == NULL )
+    {
+        std::cout << "Training data Matrix couldn't be loaded" << std::endl;
+        return 0;
+    }
+#ifdef DEBUG_VERBOSE
+    for(int i = 0; i<10; i++)
+    {
+        std::cerr << (*t_pMatDataTrain)(i,0) << " ## " << (*t_pMatDataTrain)(0,i) << std::endl;
+    }
+#endif
+    Matrix *t_pMatDataTrainLabels = loadMatlabVec( p_Command.sFileTrainDataLabels.toStdString(), "matLabels");
+    if( t_pMatDataTrainLabels == NULL )
+    {
+        std::cout << "Training data label Matrix couldn't be loaded" << std::endl;
+        return 0;
+    }
+    int iNumFeatureDimension = t_pMatDataTrain->rows();
+
+    NICE::Vector t_vecLabelsTrain(t_pMatDataTrainLabels->getDataPointer(), t_pMatDataTrainLabels->rows(), Vector::external);
+
+    OBJREC::Examples examplesTrain;
+
+    bool bRet = OBJREC::Examples::wrapExamplesAroundFeatureMatrix( *t_pMatDataTrain, t_vecLabelsTrain, examplesTrain );
+    if( !bRet )
+    {
+        std::cout << "createAndTrain: Error creating Examples from raw feature matrix and labels." << std::endl;
+        return 0;
+    }
+
+    //----------------- create raw feature mapping -------------
+    OBJREC::FeaturePool fp;
+    OBJREC::VectorFeature *pVecFeature = new OBJREC::VectorFeature(iNumFeatureDimension);
+    pVecFeature->explode(fp);
+
+#ifdef DEBUG_VERBOSE
+    //----------------- debug features -------------
+    OBJREC::Example t_Exp = examplesTrain[0].second;
+    NICE::Vector t_FeatVector;
+    fp.calcFeatureVector(t_Exp, t_FeatVector);
+    std::cerr << "first full Feature Vec: " <<t_FeatVector << std::endl;
+#endif
+    //----------------- train our random Forest -------------
+    OBJREC::FPCRandomForests *pRandForest = new OBJREC::FPCRandomForests(&t_conf,"RandomForest");
+    pRandForest->train(fp, examplesTrain);
+
+    //----------------- create codebook ERC clusterer -------------
+    int nMaxDepth        = t_conf.gI("CodebookRandomForest", "maxDepthTree",10);
+    int nMaxCodebookSize = t_conf.gI("CodebookRandomForest", "maxCodebookSize",100);
+#ifdef DEBUG_VERBOSE
+    std::cerr << "maxDepthTree " << nMaxDepth << std::endl;
+    std::cerr << "nMaxCodebookSize " << nMaxCodebookSize << std::endl;
+#endif
+    OBJREC::CodebookRandomForest *pCodebookRandomForest = new OBJREC::CodebookRandomForest(pRandForest, nMaxDepth,nMaxCodebookSize);
+
+
+    //----------------- store classifier in file ---------------------
+    bool bSuccess = storeClassifier(p_Command, pCodebookRandomForest);
+
+    //----------------- clean up -------------
+
+    delete pCodebookRandomForest;
+
+    delete pVecFeature;
+    pVecFeature = NULL;
+    // delete all "exploded" features, they are internally cloned in the random trees anyway
+    fp.destroy();
+    //
+    examplesTrain.clean();
+
+    delete t_pMatDataTrain;
+    delete t_pMatDataTrainLabels;
+
+    return true;
+}
+
+
+bool generateHistogram( const structCommands &p_Command)
+{
+
+    Matrix *t_pMatFodID = loadMatlabVec( p_Command.sFileTrainData.toStdString(), "fodID");
+    if( t_pMatFodID == NULL )
+    {
+        std::cout << "Data Matrix didn't include a fodID, so couldn't be loaded" << std::endl;
+        return 0;
+    }
+    int iFodID = (*t_pMatFodID)(0,0);
+
+    Matrix *t_pMatDataTrain       = loadMatlabVec( p_Command.sFileTrainData.toStdString(), "matFeatures");
+    if( t_pMatDataTrain == NULL )
+    {
+        std::cout << "Data Matrix couldn't be loaded" << std::endl;
+        return 0;
+    }
+
+    //----------------- restore trained codebook forest -------------
+    OBJREC::CodebookRandomForest *pCodebookRandomForest = new OBJREC::CodebookRandomForest(-1,-1);
+    if( !restoreClassifier(p_Command, pCodebookRandomForest ) )
+    {
+        std::cout << "Error restoring codebook random forest" << std::endl;
+        return false;
+    }
+
+    size_t numTrainSamples      = t_pMatDataTrain->cols();
+    size_t iNumFeatureDimension = t_pMatDataTrain->rows();
+    size_t iNumCodewords        = pCodebookRandomForest->getCodebookSize();
+#ifdef DEBUG_VERBOSE
+    std::cerr << "numTrainSamples "      << numTrainSamples         << std::endl;
+    std::cerr << "iNumFeatureDimension " << iNumFeatureDimension    << std::endl;
+    std::cerr << "iNumCodewords "        << iNumCodewords           << std::endl;
+#endif
+
+    //----------------- parse config options  -------------
+    bool bVerboseOutput = false;
+//    if( nrhs > 3)
+//    {
+//        NICE::Config conf = parseParametersERC(prhs+3, nrhs-3 );
+//        bVerboseOutput = conf.gB("CodebookRandomForest", "verbose", false);
+//    }
+
+    //----------------- quantize samples into histogram -------------
+    NICE::Vector histogram(iNumCodewords, 0.0f);
+
+    const double *pDataPtr = t_pMatDataTrain->getDataPointer();
+    int t_iCodebookEntry; double t_fWeight; double t_fDistance;
+    for (size_t i = 0; i < numTrainSamples; i++, pDataPtr+= iNumFeatureDimension )
+    {
+        const NICE::Vector t_VecTrainData( pDataPtr , iNumFeatureDimension);
+        pCodebookRandomForest->voteVQ(t_VecTrainData, histogram, t_iCodebookEntry, t_fWeight, t_fDistance );
+        if(bVerboseOutput)
+            std::cerr << i << ": " << "CBEntry " << t_iCodebookEntry << " Weight: " << t_fWeight << " Distance: " << t_fDistance << std::endl;
+    }
+
+    // store histogram
+    bool bSuccess = saveMatlabVector(p_Command.sFileStoreResult.toStdString(), histogram , iFodID);
+
+    //----------------- clean up -------------
+
+    delete pCodebookRandomForest;
+    delete t_pMatDataTrain;
+
+    return bSuccess;
+}
+
+
+int main(int argc, char **argv)
+{
+    std::set_terminate(__gnu_cxx::__verbose_terminate_handler);
+
+    structCommands sCommand;
+
+    QString sCmdArg;
+    int iCurrArgIdx = 1;
+    while(iCurrArgIdx < argc)
+    {
+        sCmdArg = QString(argv[iCurrArgIdx]);
+
+        if    ( sCmdArg == "--function" )
+        {
+            iCurrArgIdx++;
+            sCommand.sFunction = QString(argv[iCurrArgIdx]);
+        }
+        else if( sCmdArg == "--config" )
+        {
+            iCurrArgIdx++;
+            sCommand.sConfigFile = QString(argv[iCurrArgIdx]);
+        }
+
+        else if( sCmdArg == "--traindata" )
+        {
+            iCurrArgIdx++;
+            sCommand.sFileTrainData = QString(argv[iCurrArgIdx]);
+        }
+        else if( sCmdArg == "--traindatalabels" )
+        {
+            iCurrArgIdx++;
+            sCommand.sFileTrainDataLabels = QString(argv[iCurrArgIdx]);
+        }
+        else if( sCmdArg == "--results" )
+        {
+            iCurrArgIdx++;
+            sCommand.sFileStoreResult = QString(argv[iCurrArgIdx]);
+        }
+        else if( sCmdArg == "--classifier" )
+        {
+            iCurrArgIdx++;
+            sCommand.sFileStoreClassifier = QString(argv[iCurrArgIdx]);
+        }
+        else if( sCmdArg == "--help" )
+        {
+//             print_usage();
+             return 0;
+        }
+        else
+        {
+            std::cout << "unknown command arg: " << sCmdArg.toStdString() << std::endl;
+        }
+
+        iCurrArgIdx++;
+    }
+
+    ///////////////////////////////////////////////////
+    try
+    {
+        if( sCommand.sFunction.compare("createAndTrain") == 0)
+        {
+            bool bSuccess = createAndTrain(sCommand);
+        }
+        else if( sCommand.sFunction.compare("generateHistogram") == 0)
+        {
+            bool bSuccess = generateHistogram(sCommand);
+        }
+    }
+    catch(std::exception &e)
+    {
+        std::cerr << "exception occured: " << e.what() << std::endl;
+    }
+
+    return 0;
+}