|
@@ -0,0 +1,391 @@
|
|
|
|
+/**
|
|
|
|
+ * @brief Extremely randomized clustering forest program for Matlab input data.
|
|
|
|
+ *
|
|
|
|
+ * @author Johannes Ruehle
|
|
|
|
+ * @date 10/05/2014
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+#include <string>
|
|
|
|
+#include <exception>
|
|
|
|
+#include <iostream>
|
|
|
|
+#include <fstream>
|
|
|
|
+
|
|
|
|
+//----------
|
|
|
|
+#include "vislearning/features/simplefeatures/CodebookRandomForest.h"
|
|
|
|
+#include "vislearning/features/fpfeatures/VectorFeature.h"
|
|
|
|
+
|
|
|
|
+#include "vislearning/cbaselib/FeaturePool.h"
|
|
|
|
+
|
|
|
|
+#include <core/matlabAccess/MatFileIO.h>
|
|
|
|
+
|
|
|
|
+const bool verbose = false;
|
|
|
|
+const bool verboseStartEnd = true;
|
|
|
|
+
|
|
|
|
+using namespace OBJREC;
|
|
|
|
+using namespace NICE;
|
|
|
|
+using namespace std;
|
|
|
|
+
|
|
|
|
+#undef DEBUG_VERBOSE
|
|
|
|
+
|
|
|
|
+struct structCommands
|
|
|
|
+{
|
|
|
|
+ QString sFunction;
|
|
|
|
+ QString sFileTrainData;
|
|
|
|
+ QString sFileTrainDataLabels;
|
|
|
|
+ QString sConfigFile;
|
|
|
|
+
|
|
|
|
+ QString sFileStoreClassifier; // txt file storing the config of the trained codebook rdf
|
|
|
|
+ QString sFileStoreResult; // matlab mat file storing the generated histogram
|
|
|
|
+
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+bool loadMatlabMatrix(const std::string &sFilename, const std::string &matrix_name, NICE::Matrix &p_Matrix)
|
|
|
|
+{
|
|
|
|
+
|
|
|
|
+ NICE::MatFileIO matlab_file(sFilename, MAT_ACC_RDONLY);
|
|
|
|
+
|
|
|
|
+#ifdef DEBUG_VERBOSE
|
|
|
|
+ // Show the number of variables in the file
|
|
|
|
+ int vars_in_file = matlab_file.getNumberOfVariables();
|
|
|
|
+
|
|
|
|
+ std::cout << vars_in_file << " Variables in " << sFilename << "\n";
|
|
|
|
+
|
|
|
|
+ // Load the matrix
|
|
|
|
+ std::cout << "Loading matrix \"" << matrix_name << "\"...\n";
|
|
|
|
+#endif
|
|
|
|
+ // Check if the variable is a matrix
|
|
|
|
+ matvar_t* matrix_variable = matlab_file.getVariableViaName(matrix_name);
|
|
|
|
+ if(matrix_variable == NULL)
|
|
|
|
+ {
|
|
|
|
+ std::cout << "variable is not found in mat file.\n";
|
|
|
|
+ return false;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if(matrix_variable->rank != 2) {
|
|
|
|
+ std::cout << "Variable is not a matrix. Rank: " << matrix_variable->rank << ".\n";
|
|
|
|
+ return false;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Read the dimensions
|
|
|
|
+ int cols = matrix_variable->dims[1];
|
|
|
|
+ int rows = matrix_variable->dims[0];
|
|
|
|
+ std::cout << "Dimensions: " << cols << " x " << rows << "\n";
|
|
|
|
+
|
|
|
|
+ // Read the matrix into a vector of vectors
|
|
|
|
+ std::vector< std::vector<double> > matrix_vecvec(rows, std::vector<double>(cols));
|
|
|
|
+ matlab_file.getFeatureMatrixViaName(matrix_vecvec, matrix_name);
|
|
|
|
+
|
|
|
|
+ // Now, we want a NICE matrix
|
|
|
|
+ //NICE::MatrixT<double> matrix(rows, cols);
|
|
|
|
+ p_Matrix.resize(rows, cols);
|
|
|
|
+ for(int i = 0; i < rows; i++) {
|
|
|
|
+ for(int j = 0; j < cols; j++) {
|
|
|
|
+ p_Matrix(i,j) = matrix_vecvec[i][j];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+NICE::Matrix* loadMatlabVec(const std::string &sFilename, const std::string &matrix_name)
|
|
|
|
+{
|
|
|
|
+ NICE::Matrix *pMatrix = NULL;
|
|
|
|
+
|
|
|
|
+ NICE::MatFileIO *matFile = new NICE::MatFileIO(sFilename, MAT_ACC_RDONLY );
|
|
|
|
+
|
|
|
|
+ matvar_t *t = matFile->getVariableViaName(matrix_name);
|
|
|
|
+ if ( t->class_type == MAT_C_DOUBLE)
|
|
|
|
+ {
|
|
|
|
+ double *pD = (double*)( t->data );
|
|
|
|
+ pMatrix = new NICE::Matrix(pD , (int)t->dims[0], (int)t->dims[1], Matrix::copy );
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ std::cerr << "raw format of matlab matrix not supported" << std::endl;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Mat_VarFree(t);
|
|
|
|
+ delete matFile;
|
|
|
|
+
|
|
|
|
+ return pMatrix;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+bool saveMatlabVector(const std::string &sFilename, const NICE::Vector &p_Vector, int p_iFodID)
|
|
|
|
+{
|
|
|
|
+ std::ofstream ofs;
|
|
|
|
+ ofs.open (sFilename.c_str(), std::ofstream::out);
|
|
|
|
+ if (!ofs.is_open())
|
|
|
|
+ return false;
|
|
|
|
+ ofs << p_iFodID << " #fodID" << std::endl;
|
|
|
|
+ ofs << p_Vector.size() << std::endl;
|
|
|
|
+ for(int i=0; i<p_Vector.size(); i++)
|
|
|
|
+ ofs << p_Vector[i] << std::endl;
|
|
|
|
+ ofs.close();
|
|
|
|
+
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+bool storeClassifier(const structCommands &p_Command, const OBJREC::CodebookRandomForest *p_pCodebookRandomForest)
|
|
|
|
+{
|
|
|
|
+ if( p_Command.sFileStoreClassifier.isEmpty() )
|
|
|
|
+ return false;
|
|
|
|
+
|
|
|
|
+ std::string t_sDestinationSave = p_Command.sFileStoreClassifier.toStdString();
|
|
|
|
+ std::ofstream ofs;
|
|
|
|
+ ofs.open (t_sDestinationSave.c_str(), std::ofstream::out);
|
|
|
|
+ p_pCodebookRandomForest->store( ofs );
|
|
|
|
+ ofs.close();
|
|
|
|
+
|
|
|
|
+ return true;
|
|
|
|
+
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+bool restoreClassifier(const structCommands &p_Command, OBJREC::CodebookRandomForest *p_pCodebookRandomForest)
|
|
|
|
+{
|
|
|
|
+ if( p_Command.sFileStoreClassifier.isEmpty() )
|
|
|
|
+ return false;
|
|
|
|
+
|
|
|
|
+ if (p_pCodebookRandomForest == NULL )
|
|
|
|
+ return false;
|
|
|
|
+
|
|
|
|
+ std::string t_sDestinationSave = p_Command.sFileStoreClassifier.toStdString();
|
|
|
|
+ std::ifstream ifs2;
|
|
|
|
+ ifs2.open (t_sDestinationSave.c_str() );
|
|
|
|
+ p_pCodebookRandomForest->restore( ifs2 );
|
|
|
|
+ ifs2.close();
|
|
|
|
+
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+bool createAndTrain( const structCommands &p_Command)
|
|
|
|
+{
|
|
|
|
+ if( p_Command.sConfigFile.isEmpty() )
|
|
|
|
+ {
|
|
|
|
+ std::cout << "no config file provided. Exiting" << std::endl;
|
|
|
|
+ return false;
|
|
|
|
+ }
|
|
|
|
+ NICE::Config t_conf = NICE::Config( p_Command.sConfigFile.toStdString() );
|
|
|
|
+
|
|
|
|
+ Matrix *t_pMatDataTrain = loadMatlabVec( p_Command.sFileTrainData.toStdString(), "matFeatures");
|
|
|
|
+ if( t_pMatDataTrain == NULL )
|
|
|
|
+ {
|
|
|
|
+ std::cout << "Training data Matrix couldn't be loaded" << std::endl;
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+#ifdef DEBUG_VERBOSE
|
|
|
|
+ for(int i = 0; i<10; i++)
|
|
|
|
+ {
|
|
|
|
+ std::cerr << (*t_pMatDataTrain)(i,0) << " ## " << (*t_pMatDataTrain)(0,i) << std::endl;
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
+ Matrix *t_pMatDataTrainLabels = loadMatlabVec( p_Command.sFileTrainDataLabels.toStdString(), "matLabels");
|
|
|
|
+ if( t_pMatDataTrainLabels == NULL )
|
|
|
|
+ {
|
|
|
|
+ std::cout << "Training data label Matrix couldn't be loaded" << std::endl;
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+ int iNumFeatureDimension = t_pMatDataTrain->rows();
|
|
|
|
+
|
|
|
|
+ NICE::Vector t_vecLabelsTrain(t_pMatDataTrainLabels->getDataPointer(), t_pMatDataTrainLabels->rows(), Vector::external);
|
|
|
|
+
|
|
|
|
+ OBJREC::Examples examplesTrain;
|
|
|
|
+
|
|
|
|
+ bool bRet = OBJREC::Examples::wrapExamplesAroundFeatureMatrix( *t_pMatDataTrain, t_vecLabelsTrain, examplesTrain );
|
|
|
|
+ if( !bRet )
|
|
|
|
+ {
|
|
|
|
+ std::cout << "createAndTrain: Error creating Examples from raw feature matrix and labels." << std::endl;
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ //----------------- create raw feature mapping -------------
|
|
|
|
+ OBJREC::FeaturePool fp;
|
|
|
|
+ OBJREC::VectorFeature *pVecFeature = new OBJREC::VectorFeature(iNumFeatureDimension);
|
|
|
|
+ pVecFeature->explode(fp);
|
|
|
|
+
|
|
|
|
+#ifdef DEBUG_VERBOSE
|
|
|
|
+ //----------------- debug features -------------
|
|
|
|
+ OBJREC::Example t_Exp = examplesTrain[0].second;
|
|
|
|
+ NICE::Vector t_FeatVector;
|
|
|
|
+ fp.calcFeatureVector(t_Exp, t_FeatVector);
|
|
|
|
+ std::cerr << "first full Feature Vec: " <<t_FeatVector << std::endl;
|
|
|
|
+#endif
|
|
|
|
+ //----------------- train our random Forest -------------
|
|
|
|
+ OBJREC::FPCRandomForests *pRandForest = new OBJREC::FPCRandomForests(&t_conf,"RandomForest");
|
|
|
|
+ pRandForest->train(fp, examplesTrain);
|
|
|
|
+
|
|
|
|
+ //----------------- create codebook ERC clusterer -------------
|
|
|
|
+ int nMaxDepth = t_conf.gI("CodebookRandomForest", "maxDepthTree",10);
|
|
|
|
+ int nMaxCodebookSize = t_conf.gI("CodebookRandomForest", "maxCodebookSize",100);
|
|
|
|
+#ifdef DEBUG_VERBOSE
|
|
|
|
+ std::cerr << "maxDepthTree " << nMaxDepth << std::endl;
|
|
|
|
+ std::cerr << "nMaxCodebookSize " << nMaxCodebookSize << std::endl;
|
|
|
|
+#endif
|
|
|
|
+ OBJREC::CodebookRandomForest *pCodebookRandomForest = new OBJREC::CodebookRandomForest(pRandForest, nMaxDepth,nMaxCodebookSize);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ //----------------- store classifier in file ---------------------
|
|
|
|
+ bool bSuccess = storeClassifier(p_Command, pCodebookRandomForest);
|
|
|
|
+
|
|
|
|
+ //----------------- clean up -------------
|
|
|
|
+
|
|
|
|
+ delete pCodebookRandomForest;
|
|
|
|
+
|
|
|
|
+ delete pVecFeature;
|
|
|
|
+ pVecFeature = NULL;
|
|
|
|
+ // delete all "exploded" features, they are internally cloned in the random trees anyway
|
|
|
|
+ fp.destroy();
|
|
|
|
+ //
|
|
|
|
+ examplesTrain.clean();
|
|
|
|
+
|
|
|
|
+ delete t_pMatDataTrain;
|
|
|
|
+ delete t_pMatDataTrainLabels;
|
|
|
|
+
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+bool generateHistogram( const structCommands &p_Command)
|
|
|
|
+{
|
|
|
|
+
|
|
|
|
+ Matrix *t_pMatFodID = loadMatlabVec( p_Command.sFileTrainData.toStdString(), "fodID");
|
|
|
|
+ if( t_pMatFodID == NULL )
|
|
|
|
+ {
|
|
|
|
+ std::cout << "Data Matrix didn't include a fodID, so couldn't be loaded" << std::endl;
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+ int iFodID = (*t_pMatFodID)(0,0);
|
|
|
|
+
|
|
|
|
+ Matrix *t_pMatDataTrain = loadMatlabVec( p_Command.sFileTrainData.toStdString(), "matFeatures");
|
|
|
|
+ if( t_pMatDataTrain == NULL )
|
|
|
|
+ {
|
|
|
|
+ std::cout << "Data Matrix couldn't be loaded" << std::endl;
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ //----------------- restore trained codebook forest -------------
|
|
|
|
+ OBJREC::CodebookRandomForest *pCodebookRandomForest = new OBJREC::CodebookRandomForest(-1,-1);
|
|
|
|
+ if( !restoreClassifier(p_Command, pCodebookRandomForest ) )
|
|
|
|
+ {
|
|
|
|
+ std::cout << "Error restoring codebook random forest" << std::endl;
|
|
|
|
+ return false;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ size_t numTrainSamples = t_pMatDataTrain->cols();
|
|
|
|
+ size_t iNumFeatureDimension = t_pMatDataTrain->rows();
|
|
|
|
+ size_t iNumCodewords = pCodebookRandomForest->getCodebookSize();
|
|
|
|
+#ifdef DEBUG_VERBOSE
|
|
|
|
+ std::cerr << "numTrainSamples " << numTrainSamples << std::endl;
|
|
|
|
+ std::cerr << "iNumFeatureDimension " << iNumFeatureDimension << std::endl;
|
|
|
|
+ std::cerr << "iNumCodewords " << iNumCodewords << std::endl;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ //----------------- parse config options -------------
|
|
|
|
+ bool bVerboseOutput = false;
|
|
|
|
+// if( nrhs > 3)
|
|
|
|
+// {
|
|
|
|
+// NICE::Config conf = parseParametersERC(prhs+3, nrhs-3 );
|
|
|
|
+// bVerboseOutput = conf.gB("CodebookRandomForest", "verbose", false);
|
|
|
|
+// }
|
|
|
|
+
|
|
|
|
+ //----------------- quantize samples into histogram -------------
|
|
|
|
+ NICE::Vector histogram(iNumCodewords, 0.0f);
|
|
|
|
+
|
|
|
|
+ const double *pDataPtr = t_pMatDataTrain->getDataPointer();
|
|
|
|
+ int t_iCodebookEntry; double t_fWeight; double t_fDistance;
|
|
|
|
+ for (size_t i = 0; i < numTrainSamples; i++, pDataPtr+= iNumFeatureDimension )
|
|
|
|
+ {
|
|
|
|
+ const NICE::Vector t_VecTrainData( pDataPtr , iNumFeatureDimension);
|
|
|
|
+ pCodebookRandomForest->voteVQ(t_VecTrainData, histogram, t_iCodebookEntry, t_fWeight, t_fDistance );
|
|
|
|
+ if(bVerboseOutput)
|
|
|
|
+ std::cerr << i << ": " << "CBEntry " << t_iCodebookEntry << " Weight: " << t_fWeight << " Distance: " << t_fDistance << std::endl;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // store histogram
|
|
|
|
+ bool bSuccess = saveMatlabVector(p_Command.sFileStoreResult.toStdString(), histogram , iFodID);
|
|
|
|
+
|
|
|
|
+ //----------------- clean up -------------
|
|
|
|
+
|
|
|
|
+ delete pCodebookRandomForest;
|
|
|
|
+ delete t_pMatDataTrain;
|
|
|
|
+
|
|
|
|
+ return bSuccess;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+int main(int argc, char **argv)
|
|
|
|
+{
|
|
|
|
+ std::set_terminate(__gnu_cxx::__verbose_terminate_handler);
|
|
|
|
+
|
|
|
|
+ structCommands sCommand;
|
|
|
|
+
|
|
|
|
+ QString sCmdArg;
|
|
|
|
+ int iCurrArgIdx = 1;
|
|
|
|
+ while(iCurrArgIdx < argc)
|
|
|
|
+ {
|
|
|
|
+ sCmdArg = QString(argv[iCurrArgIdx]);
|
|
|
|
+
|
|
|
|
+ if ( sCmdArg == "--function" )
|
|
|
|
+ {
|
|
|
|
+ iCurrArgIdx++;
|
|
|
|
+ sCommand.sFunction = QString(argv[iCurrArgIdx]);
|
|
|
|
+ }
|
|
|
|
+ else if( sCmdArg == "--config" )
|
|
|
|
+ {
|
|
|
|
+ iCurrArgIdx++;
|
|
|
|
+ sCommand.sConfigFile = QString(argv[iCurrArgIdx]);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ else if( sCmdArg == "--traindata" )
|
|
|
|
+ {
|
|
|
|
+ iCurrArgIdx++;
|
|
|
|
+ sCommand.sFileTrainData = QString(argv[iCurrArgIdx]);
|
|
|
|
+ }
|
|
|
|
+ else if( sCmdArg == "--traindatalabels" )
|
|
|
|
+ {
|
|
|
|
+ iCurrArgIdx++;
|
|
|
|
+ sCommand.sFileTrainDataLabels = QString(argv[iCurrArgIdx]);
|
|
|
|
+ }
|
|
|
|
+ else if( sCmdArg == "--results" )
|
|
|
|
+ {
|
|
|
|
+ iCurrArgIdx++;
|
|
|
|
+ sCommand.sFileStoreResult = QString(argv[iCurrArgIdx]);
|
|
|
|
+ }
|
|
|
|
+ else if( sCmdArg == "--classifier" )
|
|
|
|
+ {
|
|
|
|
+ iCurrArgIdx++;
|
|
|
|
+ sCommand.sFileStoreClassifier = QString(argv[iCurrArgIdx]);
|
|
|
|
+ }
|
|
|
|
+ else if( sCmdArg == "--help" )
|
|
|
|
+ {
|
|
|
|
+// print_usage();
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ std::cout << "unknown command arg: " << sCmdArg.toStdString() << std::endl;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ iCurrArgIdx++;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ ///////////////////////////////////////////////////
|
|
|
|
+ try
|
|
|
|
+ {
|
|
|
|
+ if( sCommand.sFunction.compare("createAndTrain") == 0)
|
|
|
|
+ {
|
|
|
|
+ bool bSuccess = createAndTrain(sCommand);
|
|
|
|
+ }
|
|
|
|
+ else if( sCommand.sFunction.compare("generateHistogram") == 0)
|
|
|
|
+ {
|
|
|
|
+ bool bSuccess = generateHistogram(sCommand);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ catch(std::exception &e)
|
|
|
|
+ {
|
|
|
|
+ std::cerr << "exception occured: " << e.what() << std::endl;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return 0;
|
|
|
|
+}
|