LFReadCache.tcc 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. /**
  2. * @file LFReadCache.tcc
  3. * @author Erik Rodner
  4. * @date 02/14/2008
  5. */
  6. #include <vislearning/nice.h>
  7. #include <iostream>
  8. #include <fstream>
  9. #include "vislearning/features/localfeatures/LFReadCache.h"
  10. #include "vislearning/baselib/Globals.h"
  11. #include "core/basics/StringTools.h"
  12. #include "core/basics/FileMgt.h"
  13. #include "core/vector/VVector.h"
  14. namespace OBJREC {
  15. template <class ImageClass>
  16. int LFReadCache::extractFeaturesTemplate ( const ImageClass & img,
  17. NICE::VVector & features,
  18. NICE::VVector & positions) const
  19. {
  20. std::string filename = Globals::getCacheFilename ( cachedir, cachemode );
  21. std::string filename_desc = filename + ".desc";
  22. std::string filename_pos = filename + ".key";
  23. int ret = 0;
  24. if ( ! NICE::FileMgt::fileExists ( filename_desc ) ||
  25. ! NICE::FileMgt::fileExists ( filename_pos ) )
  26. {
  27. fprintf (stderr, "LFReadCache::extractFeatures: recovering data (%s,%s not found)\n", filename_desc.c_str(),
  28. filename_pos.c_str());
  29. if ( lfrep == NULL )
  30. fthrow(Exception, "LocalFeatureRepresentation not available, recovering is impossible!");
  31. lfrep->extractFeatures ( img, features, positions );
  32. features.save ( filename_desc, descFormat );
  33. positions.save ( filename_pos, NICE::VVector::FILEFORMAT_LINE );
  34. } else {
  35. if ( (descFormat == NICE::VVector::FILEFORMAT_BINARY_DOUBLE) || (descFormat == NICE::VVector::FILEFORMAT_BINARY_CHAR) )
  36. {
  37. if ( lfrep == NULL ) {
  38. fthrow(Exception, "Raw binary format needs a LocalFeatureRepresentation as prototype");
  39. } else {
  40. features.setBufSize(lfrep->getDescSize());
  41. }
  42. }
  43. features.read( filename_desc, descFormat );
  44. positions.read ( filename_pos, NICE::VVector::FILEFORMAT_LINE );
  45. if ( positions.size() != features.size() )
  46. {
  47. std::cerr << "LFReadCache::extractFeatures: format error ! positions.size=" << positions.size() <<
  48. " features.size()=" << features.size() << std::endl;
  49. std::cerr << "features: " << filename_desc << std::endl;
  50. std::cerr << "positions: " << filename_pos << std::endl;
  51. exit(-1);
  52. }
  53. if ( (numFeatures >= 0) && (features.size() > (size_t)numFeatures) ) {
  54. size_t n = features.size() - numFeatures; // >= 1
  55. fprintf (stderr, "LFReadCache: number of local features is restricted: localfeature_count %d, real %d\n",
  56. numFeatures, (int)features.size() );
  57. if ( n > (size_t)numFeatures ) {
  58. NICE::VVector nf;
  59. NICE::VVector np;
  60. for ( size_t l = 0 ; l < (size_t)numFeatures ; l++ )
  61. {
  62. size_t i = rand() % features.size();
  63. nf.push_back ( features[i] );
  64. np.push_back ( positions[i] );
  65. features.erase ( features.begin() + i );
  66. positions.erase ( positions.begin() + i );
  67. }
  68. positions = np;
  69. features = nf;
  70. } else {
  71. for ( size_t l = 0 ; l < n ; l++ )
  72. {
  73. size_t i = rand() % features.size();
  74. features.erase ( features.begin() + i );
  75. positions.erase ( positions.begin() + i );
  76. }
  77. }
  78. }
  79. }
  80. return ret;
  81. }
  82. }