123456789101112131415161718192021222324252627282930313233343536373839404142434445 |
- % brief: Unit testing of the CodebookRandomForest functions (ERC)
- % author: Johannes Ruehle
- % date: 11-04-2014 (dd-mm-yyyy)
- %% test Creation of OBJREC::Examples class from sample matrix and label data
- numSamples = 10000;
- numFeatures = 5;
- maxClass = 3;
- matFeatures = rand(numSamples, numFeatures, 'double')';
- matLabels = randi(maxClass, numSamples,1,'double');
- %% create and train
- hClassifier = CodebookRandomForestMex('createAndTrain',...
- matFeatures, matLabels,...
- 'conf', 'config.conf');
- %% calcClassDistributionPerSample
- bSucceess = CodebookRandomForestMex('calcClassDistributionPerSample',...
- hClassifier,...
- matFeatures,'verbose',true );
- assert(bSucceess);
- %% generateHistogram
- matHistogram = CodebookRandomForestMex('generateHistogram',...
- hClassifier,...
- matFeatures, 'verbose',false);
-
- %% store
- bSuccess = CodebookRandomForestMex('storeToFile',...
- hClassifier,...
- 'codebookrf.stored.txt');
- %% restore
- hRestoredClassifier = CodebookRandomForestMex('restoreFromFile',...
- 'codebookrf.stored.txt');
- assert( ~(hRestoredClassifier == false) );
- matHistogramNew = CodebookRandomForestMex('generateHistogram',...
- hRestoredClassifier,...
- matFeatures, 'verbose',false);
- d = matHistogramNew-matHistogram;
- assert( sum(d(:)) == 0 ); % histogram are alike
- %%
- CodebookRandomForestMex('delete', hClassifier);
- CodebookRandomForestMex('delete', hRestoredClassifier);
- %catch ecpn
- % disp( ecpn );
- %end
|