|
6 年之前 | |
---|---|---|
nabirds | 6 年之前 | |
.gitignore | 7 年之前 | |
Makefile | 6 年之前 | |
README.md | 6 年之前 | |
display.sh | 7 年之前 | |
requirements.txt | 7 年之前 | |
setup.py | 7 年之前 |
For more deatils to see how to use this library take a look at nabirds/display.py.
Here is some example code how to load images and use the predefined train-test split.
# replace NAB_Annotations with CUB_Annotations to load CUB200-2011 annotations
from nabirds import NAB_Annotations, Dataset
annot = NAB_Annotations("path/to/nab/folder")
train_data = Dataset(annot.train_uuids, annot)
test_data = Dataset(annot.test_uuids, annot)
print("Loaded {} training and {} test images".format(len(train_data), len(test_data)))
import matplotlib.pyplot as plt
# either access the images directly
im, parts, label = test_data[100]
plt.imshow(im)
plt.show()
# or iterate over the dataset
for im, parts, label in train_data:
plt.imshow(im)
plt.show()
Both datasets (NAB and CUB) have part annotations. Each annotation has for each of the predefined parts the location of this part and a boolean (0
or 1
) value whether this part is visible. A Dataset
instance returns besides the image and the class label this information:
im, parts, label = train_data[100]
print(parts)
# array([[ 0, 529, 304, 1],
# [ 1, 427, 277, 1],
# [ 2, 368, 323, 1],
# [ 3, 0, 0, 0],
# [ 4, 449, 292, 1],
# [ 5, 398, 502, 1],
# [ 6, 430, 398, 1],
# [ 7, 0, 0, 0],
# [ 8, 365, 751, 1],
# [ 9, 0, 0, 0],
# [ 10, 0, 0, 0]])
In order to filter by only visible parts use the utils.visible_part_locs
function. It returns the indices and the x-y positions of the visible parts:
from nabirds import utils
idxs, xy = utils.visible_part_locs(parts)
print(idxs)
# array([0, 1, 2, 4, 5, 6, 8])
print(xy)
# array([[529, 427, 368, 449, 398, 430, 365],
# [304, 277, 323, 292, 502, 398, 751]])
x, y = xy
plt.imshow(im)
plt.scatter(x,y, marker="x", c=idxs)
plt.show()
In case you don't want to use the ground truth parts, you can generate parts uniformly distributed over the image. Here you need to pass the image as well as the ratio, which tells how many parts will be extracted (ratio of 1/5
extracts 5 by 5 parts, resulting in 25 parts). In case of uniform parts all of them are visible.
from nabirds import utils
parts = utils.uniform_parts(im, ratio=1/3)
idxs, xy = utils.visible_part_locs(parts)
print(idxs)
# array([0, 1, 2, 3, 4, 5, 6, 7, 8])
print(xy)
# array([[140, 420, 700, 140, 420, 700, 140, 420, 700],
# [166, 166, 166, 499, 499, 499, 832, 832, 832]])
x, y = xy
plt.imshow(im)
plt.scatter(x,y, marker="x", c=idxs)
plt.show()
From the locations we can also extract some crops. Same as in utils.uniform_parts
you have to give a ratio with which the crops around the locations are created:
from nabirds import utils
part_crops = utils.visible_crops(im, parts, ratio=0.2)
fig = plt.figure(figsize=(16,9))
n_crops = part_crops.shape[0]
rows = int(np.ceil(np.sqrt(n_crops)))
cols = int(np.ceil(n_crops / rows))
for j, crop in enumerate(part_crops, 1):
ax = fig.add_subplot(rows, cols, j)
ax.imshow(crop)
ax.axis("off")
plt.show()
In some cases randomly selected crops are desired. Here you can use the utils.random_select
function. As optional argument you can also pass a rnd
argument, that can be an integer (indicating a random seed) or a numpy.random.RandomState
instance. Additionally, you can also determine the number of crops that will be selected (default is to select random number of crops).
from nabirds import utils
rnd_idxs, rnd_xy, rnd_part_crops = utils.random_select(idxs, xy, part_crops)
fig = plt.figure(figsize=(16,9))
n_crops = part_crops.shape[0]
rows = int(np.ceil(np.sqrt(n_crops)))
cols = int(np.ceil(n_crops / rows))
for j, crop in zip(rnd_idxs, rnd_part_crops):
ax = fig.add_subplot(rows, cols, j + 1)
ax.imshow(crop)
ax.axis("off")
plt.show()
In order to create a single image, that consist of the given parts on their correct location use utils.reveal_parts
function. It requires again besides the original image and the locations the ratio with which the parts around the locations should be revealed:
plt.imshow(reveal_parts(im, xy, ratio=0.2))
plt.show()
plt.imshow(reveal_parts(im, rnd_xy, ratio=0.2))
plt.show()
Hierachy file is currently only loaded. Code for proper processing is needed!