Ingen beskrivning

Dimitri Korsch b09185b8a1 import fix 6 år sedan
nabirds 6e8bd55515 import fix 6 år sedan
.gitignore be1c417ac6 added a readme 7 år sedan
Makefile 7a3f84eea9 new version v0.1.6 6 år sedan
README.md fcd54ae000 Added some ReadMe files 6 år sedan
display.sh cb7abb8c97 removed example scripts. added display script, that replaces the example scripts 7 år sedan
requirements.txt a568ef7d90 Image reading is now done with plain PIL. This enables lazy image reading from disc 6 år sedan
setup.py 24ef9c4a34 added function for uniform sampling 7 år sedan

README.md

NA-Birds dataset wrapper

For more deatils to see how to use this library take a look at nabirds/display.py.

Annotation and Image Loading

Here is some example code how to load images and use the predefined train-test split.

# replace NAB_Annotations with CUB_Annotations to load CUB200-2011 annotations
from nabirds import NAB_Annotations, Dataset

annot = NAB_Annotations("path/to/nab/folder")

train_data = Dataset(uuids=annot.train_uuids, annotations=annot)
test_data = Dataset(uuids=annot.test_uuids, annotations=annot)

print("Loaded {} training and {} test images".format(len(train_data), len(test_data)))

Dataset Iteration

import matplotlib.pyplot as plt

# either access the images directly
im, parts, label = test_data[100]
plt.imshow(im)
plt.show()

# or iterate over the dataset
for im, parts, label in train_data:
    plt.imshow(im)
    plt.show()

Working with Part Annotations

Both datasets (NAB and CUB) have part annotations. Each annotation has for each of the predefined parts the location of this part and a boolean (0 or 1) value whether this part is visible. A Dataset instance returns besides the image and the class label this information:


im, parts, label = train_data[100]

print(parts)
# array([[  0, 529, 304,   1],
#        [  1, 427, 277,   1],
#        [  2, 368, 323,   1],
#        [  3,   0,   0,   0],
#        [  4, 449, 292,   1],
#        [  5, 398, 502,   1],
#        [  6, 430, 398,   1],
#        [  7,   0,   0,   0],
#        [  8, 365, 751,   1],
#        [  9,   0,   0,   0],
#        [ 10,   0,   0,   0]])

Visible Parts

In order to filter by only visible parts use the utils.visible_part_locs function. It returns the indices and the x-y positions of the visible parts:

from nabirds import utils

idxs, xy = utils.visible_part_locs(parts)

print(idxs)
# array([0, 1, 2, 4, 5, 6, 8])
print(xy)
# array([[529, 427, 368, 449, 398, 430, 365],
#        [304, 277, 323, 292, 502, 398, 751]])

x, y = xy
plt.imshow(im)
plt.scatter(x,y, marker="x", c=idxs)
plt.show()

Uniform Parts

In case you don't want to use the ground truth parts, you can generate parts uniformly distributed over the image. Here you need to pass the image as well as the ratio, which tells how many parts will be extracted (ratio of 1/5 extracts 5 by 5 parts, resulting in 25 parts). In case of uniform parts all of them are visible.

from nabirds import utils

parts = utils.uniform_parts(im, ratio=1/3)
idxs, xy = utils.visible_part_locs(parts)

print(idxs)
# array([0, 1, 2, 3, 4, 5, 6, 7, 8])
print(xy)
# array([[140, 420, 700, 140, 420, 700, 140, 420, 700],
#        [166, 166, 166, 499, 499, 499, 832, 832, 832]])

x, y = xy
plt.imshow(im)
plt.scatter(x,y, marker="x", c=idxs)
plt.show()

Crop Extraction

From the locations we can also extract some crops. Same as in utils.uniform_parts you have to give a ratio with which the crops around the locations are created:

from nabirds import utils

part_crops = utils.visible_crops(im, parts, ratio=0.2)

fig = plt.figure(figsize=(16,9))
n_crops = part_crops.shape[0]
rows = int(np.ceil(np.sqrt(n_crops)))
cols = int(np.ceil(n_crops / rows))

for j, crop in enumerate(part_crops, 1):
    ax = fig.add_subplot(rows, cols, j)
    ax.imshow(crop)
    ax.axis("off")

plt.show()

Random Crops

In some cases randomly selected crops are desired. Here you can use the utils.random_select function. As optional argument you can also pass a rnd argument, that can be an integer (indicating a random seed) or a numpy.random.RandomState instance. Additionally, you can also determine the number of crops that will be selected (default is to select random number of crops).

from nabirds import utils

rnd_idxs, rnd_xy, rnd_part_crops = utils.random_select(idxs, xy, part_crops)

fig = plt.figure(figsize=(16,9))

n_crops = part_crops.shape[0]
rows = int(np.ceil(np.sqrt(n_crops)))
cols = int(np.ceil(n_crops / rows))

for j, crop in zip(rnd_idxs, rnd_part_crops):
    ax = fig.add_subplot(rows, cols, j + 1)
    ax.imshow(crop)
    ax.axis("off")

plt.show()

Revealing of the Parts

In order to create a single image, that consist of the given parts on their correct location use utils.reveal_parts function. It requires again besides the original image and the locations the ratio with which the parts around the locations should be revealed:


plt.imshow(reveal_parts(im, xy, ratio=0.2))
plt.show()

plt.imshow(reveal_parts(im, rnd_xy, ratio=0.2))
plt.show()

Hierarchies

Hierachy file is currently only loaded. Code for proper processing is needed!