Sin descripción

Christoph Kaeding 5e1a008e18 init hace 8 años
activeLearning 5e1a008e18 init hace 8 años
evaluation 5e1a008e18 init hace 8 años
reweighting 5e1a008e18 init hace 8 años
.gitignore 5e1a008e18 init hace 8 años
COPYING 5e1a008e18 init hace 8 años
COPYING.LESSER 5e1a008e18 init hace 8 años
README.md 5e1a008e18 init hace 8 años
README.md.bak 5e1a008e18 init hace 8 años
datasetAcquisition.py 5e1a008e18 init hace 8 años
example_setup.cfg 5e1a008e18 init hace 8 años
helperFunctions.py 5e1a008e18 init hace 8 años
methodSelection.py 5e1a008e18 init hace 8 años

README.md

Expected Model Output Change (EMOC)

Source code for methods described in the following papers:

  • Active learning and discovery of object categories in the presence of unnameable instances C Käding, A Freytag, E Rodner, P Bodesheim, J Denzler Computer Vision and Pattern Recognition (CVPR), 2015

  • Large-Scale Active Learning with Approximations of Expected Model Output Changes C Käding, A Freytag, E Rodner, A Perino, J Denzler German Conference on Pattern Recognition (GCPR), 2016

  • Watch, Ask, Learn, and Improve: A Lifelong Learning Cycle for Visual Recognition C Käding, E Rodner, A Freytag, J Denzler European Symposium on Artificial Neural Networks (ESANN), 2016

If you use parts of the code, please cite the corresponding papers.

Dependencies
  • Python 2.7
  • numpy
  • scipy
  • scikit-learn
Usage
  1. define setup (see example_setup.cfg)
  2. precompute setup (run evaluation/PrecomputeExperimentalSetup.py setup.cfg)
  3. start experiment (run evaluation/RunExperiment.py setup.cfg)
  4. see results (stored in results.mat)