Avalanche is a framework in constant development. Thanks to the support of the ContinualAI community and its active members we plan to extend its features and improve its usability based on the demands of our research community!
A the moment, Avalanche is in Alpha (v0.0.1), but we already support a number of Benchmarks, Strategies and Metrics, that makes it, we believe, the best tool out there for your continual learning research! 💪
{% hint style="info" %} Check out below what we support in details, and please let us know if you think we are missing out something important! We deeply value your feedback! {% endhint %}
In the Table below, we list all the Pytorch datasets used in Continual Learning (along with some references) and indicating if we support them in Avalanche or not. Some of them were already available in Torchvision, while other have been integrated by us.
Name | Dataset Support | From Torch Vision | Automatic Download | References |
---|---|---|---|---|
CORe50 | ✔️ | ✔️ | ✔️ | [1] |
MNIST | ✔️ | ✔️ | ✔️ | n.a. |
CIFAR-10 | ✔️ | ✔️ | ✔️ | n.a. |
CIFAR-100 | ✔️ | ✔️ | ✔️ | n.a. |
FashionMNIST | ✔️ | ✔️ | ✔️ | n.a. |
TinyImagenet | ✔️ | ✔️ | ✔️ | n.a. |
MiniImagenet | ✔️ | ❌ | ❌ | n.a. |
Imagenet | ✔️ | ✔️ | ❌ | n.a. |
CUB200 | ✔️ | ❌ | ✔️ | n.a. |
CRIB | ❌ | ❌ | ❌ | n.a. |
OpenLORIS | ✔️ | ❌ | ✔️ | n.a. |
Stream-51 | ✔️ | ❌ | ✔️ | n.a. |
KMNIST | ✔️ | ✔️ | ✔️ | n.a. |
EMNIST | ✔️ | ✔️ | ✔️ | n.a. |
QMNIST | ✔️ | ✔️ | ✔️ | n.a. |
FakeData | ✔️ | ✔️ | ✔️ | n.a. |
CocoCaption | ✔️ | ✔️ | ❌ | n.a. |
CocoDetection | ✔️ | ❌ | ❌ | n.a. |
LSUN | ✔️ | ❌ | ❌ | n.a. |
STL10 | ✔️ | ❌ | ✔️ | n.a. |
SVHN | ✔️ | ❌ | ✔️ | n.a. |
PhotoTour | ✔️ | ❌ | ✔️ | n.a. |
SBU | ✔️ | ✔️ | ✔️ | n.a. |
Flickr8k | ✔️ | ✔️ | ❌ | n.a. |
Flickr30k | ✔️ | ✔️ | ❌ | n.a. |
VOCDetection | ✔️ | ✔️ | ✔️ | n.a. |
VOCSegmentation | ✔️ | ✔️ | ✔️ | n.a. |
Cityscapes | ✔️ | ✔️ | ❌ | n.a. |
SBDataset | ✔️ | ✔️ | ✔️ | n.a. |
USPS | ✔️ | ✔️ | ✔️ | n.a. |
Kinetics400 | ✔️ | ✔️ | ❌ | n.a. |
HMDB51 | ✔️ | ✔️ | ❌ | n.a. |
UCF101 | ✔️ | ✔️ | ❌ | n.a. |
CelebA | ✔️ | ✔️ | ✔️ | n.a. |
Caltech101 | ❌ | ❌ | ❌ | n.a. |
Caltech256 | ❌ | ❌ | ❌ | n.a. |
In the Table below, we list all the major benchmarks used in Continual Learning (along with some references) and indicating if we support them in Avalanche or not.
""Benchmark Support" is checked if the actual continual learning benchmark (with the actual stream of data) is also provided.
Name | Benchmark Support | References |
---|---|---|
CORe50 | ✔️ | [1] |
RotatedMNIST | ✔️ | n.a. |
PermutedMNIST | ✔️ | n.a. |
SplitMNIST | ✔️ | n.a. |
FashionMNIST | ✔️ | n.a. |
CIFAR-10 | ✔️ | n.a. |
CIFAR-100 | ✔️ | n.a. |
CIFAR-110 | ✔️ | n.a. |
TinyImagenet | ✔️ | n.a. |
CUB200 | ✔️ | n.a. |
SplitImagenet | ✔️ | n.a. |
CRIB | ❌ | n.a. |
OpenLORIS | ✔️ | n.a. |
MiniImagenet | ❌ | n.a. |
Stream-51 | ✔️ | n.a. |
In the Table below, we list all the Continual Learning algorithms (also known as strategies) we currently support in Avalanche.
"Strategy Support" is checked if the algorithm is already available in Avalanche, whereas "Plugin Support" is checked if the corresponding plugin of the strategy (that can be used in conjunction with other strategies) is is also provided.
Name | Strategy Support | Plugin Support | References |
---|---|---|---|
Naive (a.k.a. "Finetuning") | ✔️ | ❌ | n.a. |
Naive Multi-Head | ✔️ | ✔️ | n.a. |
Joint Training (a.k.a. "Multi-Task") | ✔️ | ❌ | n.a. |
Cumulative | ✔️ | ❌ | n.a. |
GDumb | ✔️ | ✔️ | n.a. |
Experience Replay (a.k.a. "Rehearsal") | ✔️ | ✔️ | n.a. |
EWC | ✔️ | ✔️ | n.a. |
LWF | ✔️ | ✔️ | n.a. |
GEM | ✔️ | ✔️ | n.a. |
AGEM | ✔️ | ✔️ | n.a. |
CWR | ✔️ | ✔️ | n.a. |
SI | ✔️ | ✔️ | n.a. |
iCaRL | ❌ | ❌ | n.a. |
AR1 | ✔️ | ❌ | n.a. |
In the Table below, we list all the Continual Learning Metrics we currently support in Avalanche. All the metrics by default can be collected during runtime, logged on stdout or on log file.
With "Tensorboard" is checked if the metrics can be also visualized in Tensorboard is already available in Avalanche, whereas "Wandb" is checked if the metrics can be visualized in Wandb.
Name | Support | Tensorboard | Wandb | References |
---|---|---|---|---|
Accuracy | ✔️ | ✔️ | ❌ | n.a. |
Loss | ✔️ | ✔️ | ❌ | n.a. |
ACC | ❌ | ❌ | ❌ | (Lopez-Paz, 2017) |
BWT | ❌ | ❌ | ❌ | (Lopez-Paz, 2017) |
FWT | ❌ | ❌ | ❌ | (Lopez-Paz, 2017) |
Catastrophic Forgetting | ✔️ | ✔️ | ❌ | n.a. |
Remembering | ❌ | ❌ | ❌ | n.a. |
A | ❌ | ❌ | ❌ | (Díaz-Rodríguez, 2018) |
MS | ❌ | ❌ | ❌ | (Díaz-Rodríguez, 2018) |
SSS | ❌ | ❌ | ❌ | (Díaz-Rodríguez, 2018) |
CE | ❌ | ❌ | ❌ | (Díaz-Rodríguez, 2018) |
Confusion Matrix | ✔️ | ✔️ | ❌ | n.a. |
MAC | ✔️ | ✔️ | ❌ | n.a. |
CPU Usage | ✔️ | ✔️ | ❌ | n.a. |
Disk Usage | ✔️ | ✔️ | ❌ | n.a. |
GPU Usage | ✔️ | ✔️ | ❌ | n.a. |
RAM Usage | ✔️ | ✔️ | ❌ | n.a. |
Running Time | ✔️ | ✔️ | ❌ | n.a. |
CLScore | ❌ | ❌ | ❌ | (Díaz-Rodríguez, 2018) |
CLStability | ❌ | ❌ | ❌ | (Díaz-Rodríguez, 2018) |