life_long_learning.bbl 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. \begin{thebibliography}{10}
  2. \bibitem{Aljundi2019OnlineCL}
  3. R.~Aljundi, L.~Caccia, E.~Belilovsky, M.~Caccia, M.~Lin, L.~Charlin, and
  4. T.~Tuytelaars.
  5. \newblock Online continual learning with maximally interfered retrieval.
  6. \newblock {\em ArXiv}, abs/1908.04742, 2019.
  7. \bibitem{Aljundi2019GradientBS}
  8. R.~Aljundi, M.~Lin, B.~Goujaud, and Y.~Bengio.
  9. \newblock Gradient based sample selection for online continual learning.
  10. \newblock In {\em NeurIPS}, 2019.
  11. \bibitem{chaudhry2018riemannian}
  12. A.~Chaudhry, P.~K. Dokania, T.~Ajanthan, and P.~H. Torr.
  13. \newblock Riemannian walk for incremental learning: Understanding forgetting
  14. and intransigence.
  15. \newblock In {\em Proceedings of the European Conference on Computer Vision
  16. (ECCV)}, pages 532--547, 2018.
  17. \bibitem{kirkpatrick2017overcoming}
  18. J.~Kirkpatrick, R.~Pascanu, N.~Rabinowitz, J.~Veness, G.~Desjardins, A.~A.
  19. Rusu, K.~Milan, J.~Quan, T.~Ramalho, A.~Grabska-Barwinska, et~al.
  20. \newblock Overcoming catastrophic forgetting in neural networks.
  21. \newblock {\em Proceedings of the national academy of sciences},
  22. 114(13):3521--3526, 2017.
  23. \bibitem{Knoblauch2020OptimalCL}
  24. J.~Knoblauch, H.~Husain, and T.~Diethe.
  25. \newblock Optimal continual learning has perfect memory and is np-hard.
  26. \newblock In {\em ICML}, 2020.
  27. \bibitem{li2017learning}
  28. Z.~Li and D.~Hoiem.
  29. \newblock Learning without forgetting.
  30. \newblock {\em IEEE transactions on pattern analysis and machine intelligence},
  31. 40(12):2935--2947, 2017.
  32. \bibitem{Lomonaco2020RehearsalFreeCL}
  33. V.~Lomonaco, D.~Maltoni, and L.~Pellegrini.
  34. \newblock Rehearsal-free continual learning over small non-i.i.d. batches.
  35. \newblock {\em 2020 IEEE/CVF Conference on Computer Vision and Pattern
  36. Recognition Workshops (CVPRW)}, pages 989--998, 2020.
  37. \bibitem{Lomonaco2020CVPR2C}
  38. V.~Lomonaco, L.~Pellegrini, P.~Rodr{\'i}guez, M.~Caccia, Q.~She, Y.~Chen,
  39. Q.~Jodelet, R.~Wang, Z.~Mai, D.~V{\'a}zquez, G.~I. Parisi, N.~Churamani,
  40. M.~Pickett, I.~H. Laradji, and D.~Maltoni.
  41. \newblock Cvpr 2020 continual learning in computer vision competition:
  42. Approaches, results, current challenges and future directions.
  43. \newblock {\em ArXiv}, abs/2009.09929, 2020.
  44. \bibitem{lopez2017gradient}
  45. D.~Lopez-Paz and M.~Ranzato.
  46. \newblock Gradient episodic memory for continual learning.
  47. \newblock volume~30, pages 6467--6476, 2017.
  48. \bibitem{Maltoni2019ContinuousLI}
  49. D.~Maltoni and V.~Lomonaco.
  50. \newblock Continuous learning in single-incremental-task scenarios.
  51. \newblock {\em Neural networks : the official journal of the International
  52. Neural Network Society}, 116:56--73, 2019.
  53. \bibitem{Pellegrini2020LatentRF}
  54. L.~Pellegrini, G.~Graffieti, V.~Lomonaco, and D.~Maltoni.
  55. \newblock Latent replay for real-time continual learning.
  56. \newblock {\em 2020 IEEE/RSJ International Conference on Intelligent Robots and
  57. Systems (IROS)}, pages 10203--10209, 2020.
  58. \bibitem{Pelosin2021MoreIB}
  59. F.~Pelosin and A.~Torsello.
  60. \newblock More is better: An analysis of instance quantity/quality trade-off in
  61. rehearsal-based continual learning.
  62. \newblock {\em ArXiv}, abs/2105.14106, 2021.
  63. \bibitem{Prabhu2020GDumbAS}
  64. A.~Prabhu, P.~H.~S. Torr, and P.~Dokania.
  65. \newblock Gdumb: A simple approach that questions our progress in continual
  66. learning.
  67. \newblock In {\em ECCV}, 2020.
  68. \bibitem{rebuffi2017icarl}
  69. S.-A. Rebuffi, A.~Kolesnikov, G.~Sperl, and C.~H. Lampert.
  70. \newblock icarl: Incremental classifier and representation learning.
  71. \newblock In {\em Proceedings of the IEEE conference on Computer Vision and
  72. Pattern Recognition}, pages 2001--2010, 2017.
  73. \bibitem{shin2017continual}
  74. H.~Shin, J.~K. Lee, J.~Kim, and J.~Kim.
  75. \newblock Continual learning with deep generative replay.
  76. \newblock {\em arXiv preprint arXiv:1705.08690}, 2017.
  77. \bibitem{zenke2017continual}
  78. F.~Zenke, B.~Poole, and S.~Ganguli.
  79. \newblock Continual learning through synaptic intelligence.
  80. \newblock In {\em International Conference on Machine Learning}, pages
  81. 3987--3995. PMLR, 2017.
  82. \end{thebibliography}