eval_bow.py 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869
  1. # Approach 3: Local features
  2. # This script is used for calculating BOW features of Motion images
  3. # using a BOW vocabulary.
  4. # See train_bow.py for training.
  5. import argparse
  6. import os
  7. import numpy as np
  8. from sklearn import svm
  9. from py.Dataset import Dataset
  10. from py.LocalFeatures import generate_bow_features
  11. def main():
  12. parser = argparse.ArgumentParser(description="BOW train script")
  13. parser.add_argument("dataset_dir", type=str, help="Directory of the dataset containing all session folders")
  14. parser.add_argument("session_name", type=str, help="Name of the session to use for Lapse images (e.g. marten_01)")
  15. parser.add_argument("--clusters", type=int, help="Number of clusters / BOW vocabulary size", default=1024)
  16. parser.add_argument("--step_size", type=int, help="DSIFT keypoint step size. Smaller step size = more keypoints.", default=30)
  17. parser.add_argument("--keypoint_size", type=int, help="DSIFT keypoint size. Defaults to step_size.", default=-1)
  18. parser.add_argument("--include_motion", action="store_true", help="Include motion images for training.")
  19. parser.add_argument("--random_prototypes", action="store_true", help="Pick random prototype vectors instead of doing kmeans.")
  20. args = parser.parse_args()
  21. if args.keypoint_size <= 0:
  22. args.keypoint_size = args.step_size
  23. print(f"Using keypoint size {args.keypoint_size} with step size {args.step_size}.")
  24. ds = Dataset(args.dataset_dir)
  25. session = ds.create_session(args.session_name)
  26. save_dir = f"./bow_train_NoBackup/{session.name}"
  27. suffix = ""
  28. if args.include_motion:
  29. suffix += "_motion"
  30. print("Including motion data for prototype selection!")
  31. if args.random_prototypes:
  32. suffix += "_random"
  33. print("Picking random prototypes instead of using kmeans!")
  34. dictionary_file = os.path.join(save_dir, f"bow_dict_{args.step_size}_{args.keypoint_size}_{args.clusters}{suffix}.npy")
  35. train_feat_file = os.path.join(save_dir, f"bow_train_{args.step_size}_{args.keypoint_size}_{args.clusters}{suffix}.npy")
  36. eval_file = os.path.join(save_dir, f"bow_eval_{args.step_size}_{args.keypoint_size}_{args.clusters}{suffix}.csv")
  37. if not os.path.isfile(dictionary_file):
  38. print(f"ERROR: BOW dictionary missing! ({dictionary_file})")
  39. elif not os.path.isfile(train_feat_file):
  40. print(f"ERROR: Train data file missing! ({train_feat_file})")
  41. elif os.path.isfile(eval_file):
  42. print(f"ERROR: Eval file already exists! ({eval_file})")
  43. else:
  44. print(f"Loading dictionary from {dictionary_file}...")
  45. dictionary = np.load(dictionary_file)
  46. print(f"Loading training data from {train_feat_file}...")
  47. train_data = np.load(train_feat_file).squeeze()
  48. print(f"Fitting one-class SVM...")
  49. clf = svm.OneClassSVM().fit(train_data)
  50. print("Evaluating...")
  51. with open(eval_file, "a+") as f:
  52. for filename, feat in generate_bow_features(list(session.generate_motion_images()), dictionary, kp_step=args.step_size, kp_size=args.keypoint_size):
  53. y = clf.decision_function(feat)[0]
  54. f.write(f"{filename},{y}\n")
  55. f.flush()
  56. print("Complete!")
  57. if __name__ == "__main__":
  58. main()