Autoencoder3.py 2.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879
  1. # Experimental architecture; not used for paper results.
  2. # Convolutional with 6 conv layers + 1 dense layer per encoder and decoder.
  3. # Dropout, relu on hidden layers, tanh on output layer
  4. # Allows any number of latent features
  5. # More parameters than Autoencoder2
  6. from torch import nn
  7. class Autoencoder(nn.Module):
  8. def __init__(self, dropout=0.1, latent_features=512):
  9. super(Autoencoder, self).__init__()
  10. self.encoder = nn.Sequential(
  11. nn.Dropout(dropout),
  12. nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
  13. nn.ReLU(True),
  14. nn.Dropout(dropout),
  15. nn.Conv2d(64, 64, kernel_size=5, stride=2, padding=2),
  16. nn.ReLU(True),
  17. nn.Dropout(dropout),
  18. nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
  19. nn.ReLU(True),
  20. nn.Dropout(dropout),
  21. nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
  22. nn.ReLU(True),
  23. nn.Dropout(dropout),
  24. nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
  25. nn.ReLU(True),
  26. nn.Dropout(dropout),
  27. nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
  28. nn.ReLU(True),
  29. nn.Dropout(dropout),
  30. nn.Flatten(),
  31. nn.Linear(1024, latent_features),
  32. nn.ReLU(True),
  33. )
  34. self.decoder = nn.Sequential(
  35. nn.Linear(512, 1024),
  36. nn.ReLU(True),
  37. nn.Unflatten(1, (64, 4, 4)),
  38. nn.Dropout(dropout),
  39. nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
  40. nn.ReLU(True),
  41. nn.Dropout(dropout),
  42. nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
  43. nn.ReLU(True),
  44. nn.Dropout(dropout),
  45. nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
  46. nn.ReLU(True),
  47. nn.Dropout(dropout),
  48. nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
  49. nn.ReLU(True),
  50. nn.Dropout(dropout),
  51. nn.ConvTranspose2d(64, 64, kernel_size=6, stride=2, padding=2),
  52. nn.ReLU(True),
  53. nn.Dropout(dropout),
  54. nn.ConvTranspose2d(64, 64, kernel_size=8, stride=2, padding=3),
  55. nn.ReLU(True),
  56. nn.Dropout(dropout),
  57. nn.Conv2d(64, 3, kernel_size=3, stride=1, padding="same"),
  58. nn.Tanh(),
  59. )
  60. def forward(self, x):
  61. x = self.encoder(x)
  62. x = self.decoder(x)
  63. return x