Autoencoder3.py 2.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081
  1. # Copyright (c) 2023 Felix Kleinsteuber and Computer Vision Group, Friedrich Schiller University Jena
  2. # Experimental architecture; not used for paper results.
  3. # Convolutional with 6 conv layers + 1 dense layer per encoder and decoder.
  4. # Dropout, relu on hidden layers, tanh on output layer
  5. # Allows any number of latent features
  6. # More parameters than Autoencoder2
  7. from torch import nn
  8. class Autoencoder(nn.Module):
  9. def __init__(self, dropout=0.1, latent_features=512):
  10. super(Autoencoder, self).__init__()
  11. self.encoder = nn.Sequential(
  12. nn.Dropout(dropout),
  13. nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
  14. nn.ReLU(True),
  15. nn.Dropout(dropout),
  16. nn.Conv2d(64, 64, kernel_size=5, stride=2, padding=2),
  17. nn.ReLU(True),
  18. nn.Dropout(dropout),
  19. nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
  20. nn.ReLU(True),
  21. nn.Dropout(dropout),
  22. nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
  23. nn.ReLU(True),
  24. nn.Dropout(dropout),
  25. nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
  26. nn.ReLU(True),
  27. nn.Dropout(dropout),
  28. nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
  29. nn.ReLU(True),
  30. nn.Dropout(dropout),
  31. nn.Flatten(),
  32. nn.Linear(1024, latent_features),
  33. nn.ReLU(True),
  34. )
  35. self.decoder = nn.Sequential(
  36. nn.Linear(512, 1024),
  37. nn.ReLU(True),
  38. nn.Unflatten(1, (64, 4, 4)),
  39. nn.Dropout(dropout),
  40. nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
  41. nn.ReLU(True),
  42. nn.Dropout(dropout),
  43. nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
  44. nn.ReLU(True),
  45. nn.Dropout(dropout),
  46. nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
  47. nn.ReLU(True),
  48. nn.Dropout(dropout),
  49. nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
  50. nn.ReLU(True),
  51. nn.Dropout(dropout),
  52. nn.ConvTranspose2d(64, 64, kernel_size=6, stride=2, padding=2),
  53. nn.ReLU(True),
  54. nn.Dropout(dropout),
  55. nn.ConvTranspose2d(64, 64, kernel_size=8, stride=2, padding=3),
  56. nn.ReLU(True),
  57. nn.Dropout(dropout),
  58. nn.Conv2d(64, 3, kernel_size=3, stride=1, padding="same"),
  59. nn.Tanh(),
  60. )
  61. def forward(self, x):
  62. x = self.encoder(x)
  63. x = self.decoder(x)
  64. return x