123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- # Copyright (c) 2023 Felix Kleinsteuber and Computer Vision Group, Friedrich Schiller University Jena
- # Experimental architecture; not used for paper results.
- # Convolutional with 6 conv layers + 1 dense layer per encoder and decoder.
- # Dropout, relu on hidden layers, tanh on output layer
- # Allows any number of latent features
- # More parameters than Autoencoder2
- from torch import nn
- class Autoencoder(nn.Module):
- def __init__(self, dropout=0.1, latent_features=512):
- super(Autoencoder, self).__init__()
- self.encoder = nn.Sequential(
- nn.Dropout(dropout),
- nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(64, 64, kernel_size=5, stride=2, padding=2),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Flatten(),
- nn.Linear(1024, latent_features),
- nn.ReLU(True),
- )
- self.decoder = nn.Sequential(
- nn.Linear(512, 1024),
- nn.ReLU(True),
- nn.Unflatten(1, (64, 4, 4)),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(64, 64, kernel_size=6, stride=2, padding=2),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.ConvTranspose2d(64, 64, kernel_size=8, stride=2, padding=3),
- nn.ReLU(True),
- nn.Dropout(dropout),
- nn.Conv2d(64, 3, kernel_size=3, stride=1, padding="same"),
- nn.Tanh(),
- )
-
- def forward(self, x):
- x = self.encoder(x)
- x = self.decoder(x)
- return x
|