|
@@ -0,0 +1,186 @@
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+from scipy.integrate import odeint
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+
|
|
|
+class SyntheticDeseaseData:
|
|
|
+ def __init__(self, simulation_time, time_points):
|
|
|
+ """This class is the parent class for every class, that is supposed to generate synthetic data.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ simulation_time (int): Real time for that the synthetic data is supposed to be generated in days.
|
|
|
+ time_points (int): Number of time sample points.
|
|
|
+ """
|
|
|
+ self.t = np.linspace(0, simulation_time, time_points)
|
|
|
+ self.data = None
|
|
|
+ self.generated = False
|
|
|
+
|
|
|
+ def differential_eq(self):
|
|
|
+ """In this function the differential equation of the model will be implemented.
|
|
|
+ """
|
|
|
+ pass
|
|
|
+
|
|
|
+ def generate(self):
|
|
|
+ """In this function the data generation will be implemented.
|
|
|
+ """
|
|
|
+ self.generated = True
|
|
|
+
|
|
|
+ def plot(self, labels: tuple):
|
|
|
+ """Plot the data which was generated.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ labels (tuple): The names of each curve.
|
|
|
+ """
|
|
|
+ if self.generated:
|
|
|
+ fig = plt.figure(figsize=(12,12))
|
|
|
+ ax = fig.add_subplot(111, facecolor='#dddddd', axisbelow=True)
|
|
|
+ ax.set_facecolor('xkcd:white')
|
|
|
+
|
|
|
+ color = ('violet', 'darkgreen', 'blue', 'red')
|
|
|
+ for i in range(len(self.data)):
|
|
|
+ # plot each group
|
|
|
+ ax.plot(self.t, self.data[i], color[i], alpha=0.5, lw=2, label=labels[i], linestyle='dashed')
|
|
|
+
|
|
|
+ ax.set_xlabel('Time per days')
|
|
|
+ ax.set_ylabel('Number')
|
|
|
+ ax.yaxis.set_tick_params(length=0)
|
|
|
+ ax.xaxis.set_tick_params(length=0)
|
|
|
+ ax.grid(which='major', c='black', lw=0.2, ls='-')
|
|
|
+ legend = ax.legend()
|
|
|
+ legend.get_frame().set_alpha(0.5)
|
|
|
+ for spine in ('top', 'right', 'bottom', 'left'):
|
|
|
+ ax.spines[spine].set_visible(False)
|
|
|
+ plt.savefig('visualizations/synthetic_dataset.png')
|
|
|
+ else:
|
|
|
+ print('Data has to be generated before plotting!') # Fabienne war hier
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+class SIR(SyntheticDeseaseData):
|
|
|
+ def __init__(self, N=59e6, I_0=1, R_0=0, simulation_time=500, time_points=100, alpha=0.191, beta=0.05) -> None:
|
|
|
+ """This class is able to generate synthetic data for the SIR model.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ N (int, optional): Size of the population. Defaults to 59e6.
|
|
|
+ I_0 (int, optional): Initial size of the infectious group. Defaults to 1.
|
|
|
+ R_0 (int, optional): Initial size of the removed group. Defaults to 0.
|
|
|
+ simulation_time (int, optional): Real time for that the synthetic data is supposed to be generated in days. Defaults to 500.
|
|
|
+ time_points (int, optional): Number of time sample points. Defaults to 100.
|
|
|
+ alpha (float, optional): Factor dictating how many people per timestep go from 'Infectious' to 'Removed'. Defaults to 0.191.
|
|
|
+ beta (float, optional): Factor dictating how many people per timestep go from 'Susceptible' to 'Infectious'. Defaults to 0.05.
|
|
|
+ """
|
|
|
+ self.N = N
|
|
|
+ self.S_0 = N - I_0 - R_0
|
|
|
+ self.I_0 = I_0
|
|
|
+ self.R_0 = R_0
|
|
|
+
|
|
|
+ self.alpha = alpha
|
|
|
+ self.beta = beta
|
|
|
+
|
|
|
+ super().__init__(simulation_time, time_points)
|
|
|
+
|
|
|
+ def differential_eq(self, y, t, alpha, beta):
|
|
|
+ """In this function implements the differential equation of the SIR model will be implemented.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ y (tuple): Vector that holds the current state of the three groups.
|
|
|
+ t (_): not used
|
|
|
+ alpha (_): not used
|
|
|
+ beta (_): not used
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ tuple: Change amount for each group.
|
|
|
+ """
|
|
|
+ S, I, R = y
|
|
|
+ dSdt = -self.beta * ((S * I) / self.N) # -self.beta * S * I
|
|
|
+ dIdt = self.beta * ((S * I) / self.N) - self.alpha * I # self.beta * S * I - self.alpha * I
|
|
|
+ dRdt = self.alpha * I
|
|
|
+ return dSdt, dIdt, dRdt
|
|
|
+
|
|
|
+ def generate(self):
|
|
|
+ """This funtion generates the data for this configuration of the SIR model.
|
|
|
+ """
|
|
|
+ y_0 = self.S_0, self.I_0, self.R_0
|
|
|
+ self.data = odeint(self.differential_eq, y_0, self.t, args=(self.alpha, self.beta)).T
|
|
|
+ super().generate()
|
|
|
+
|
|
|
+ def plot(self):
|
|
|
+ """Plot the data which was generated.
|
|
|
+ """
|
|
|
+ super().plot(('Susceptible', 'Infectious', 'Removed'))
|
|
|
+
|
|
|
+ def save(self, name=''):
|
|
|
+ if self.generated:
|
|
|
+ COVID_Data = np.asarray([self.t, *self.data])
|
|
|
+
|
|
|
+ np.savetxt('datasets/SIR_data.csv', COVID_Data, delimiter=",")
|
|
|
+ else:
|
|
|
+ print('Data has to be generated before plotting!')
|
|
|
+
|
|
|
+
|
|
|
+class SIDR(SyntheticDeseaseData):
|
|
|
+ def __init__(self, N=59e6, I_0=1, D_0=0, R_0=0, simulation_time=500, time_points=100, alpha=0.191, beta=0.05, gamma=0.0294) -> None:
|
|
|
+ """This class is able to generate synthetic data for the SIDR model.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ N (int, optional): Size of the population. Defaults to 59e6.
|
|
|
+ I_0 (int, optional): Initial size of the infectious group. Defaults to 1.
|
|
|
+ D_0 (int, optional): Initial size of the dead group. Defaults to 0.
|
|
|
+ R_0 (int, optional): Initial size of the recovered group. Defaults to 0.
|
|
|
+ simulation_time (int, optional): Real time for that the synthetic data is supposed to be generated in days. Defaults to 500.
|
|
|
+ time_points (int, optional): Number of time sample points. Defaults to 100.
|
|
|
+ alpha (float, optional): Factor dictating how many people per timestep go from 'Susceptible' to 'Infectious'. Defaults to 0.191.
|
|
|
+ beta (float, optional): Factor dictating how many people per timestep go from 'Infectious' to 'Dead'. Defaults to 0.05.
|
|
|
+ gamma (float, optional): Factor dictating how many people per timestep go from 'Infectious' to 'Recovered'. Defaults to 0.0294.
|
|
|
+ """
|
|
|
+ self.N = N
|
|
|
+ self.S_0 = N - I_0 - D_0 - R_0
|
|
|
+ self.I_0 = I_0
|
|
|
+ self.D_0 = D_0
|
|
|
+ self.R_0 = R_0
|
|
|
+
|
|
|
+ self.alpha = alpha
|
|
|
+ self.beta = beta
|
|
|
+ self.gamma = gamma
|
|
|
+
|
|
|
+ super().__init__(simulation_time, time_points)
|
|
|
+
|
|
|
+ def differential_eq(self, y, t, alpha, beta, gamma):
|
|
|
+ """In this function implements the differential equation of the SIDR model will be implemented.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ y (tuple): Vector that holds the current state of the three groups.
|
|
|
+ t (_): not used
|
|
|
+ alpha (_): not used
|
|
|
+ beta (_): not used
|
|
|
+ gamma (_): not used
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ tuple: Change amount for each group.
|
|
|
+ """
|
|
|
+ S, I, D, R = y
|
|
|
+ dSdt = - (self.alpha / self.N) * S * I
|
|
|
+ dIdt = (self.alpha / self.N) * S * I - self.beta * I - self.gamma * I
|
|
|
+ dDdt = self.gamma * I
|
|
|
+ dRdt = self.beta * I
|
|
|
+ return dSdt, dIdt, dDdt, dRdt
|
|
|
+
|
|
|
+ def generate(self):
|
|
|
+ """This funtion generates the data for this configuration of the SIR model.
|
|
|
+ """
|
|
|
+ y_0 = self.S_0, self.I_0, self.D_0, self.R_0
|
|
|
+ self.data = odeint(self.differential_eq, y_0, self.t, args=(self.alpha, self.beta, self.gamma)).T
|
|
|
+ super().generate()
|
|
|
+
|
|
|
+ def plot(self):
|
|
|
+ """Plot the data which was generated.
|
|
|
+ """
|
|
|
+ super().plot(('Susceptible', 'Infectious', 'Dead', 'Recovered'))
|
|
|
+
|
|
|
+ def save(self, name=''):
|
|
|
+ if self.generated:
|
|
|
+ COVID_Data = np.asarray([self.t, *self.data])
|
|
|
+
|
|
|
+ np.savetxt('datasets/SIDR_data.csv', COVID_Data, delimiter=",")
|
|
|
+ else:
|
|
|
+ print('Data has to be generated before plotting!')
|