123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- import numpy as np
- from scipy.integrate import odeint
- import matplotlib.pyplot as plt
- class SyntheticDeseaseData:
- def __init__(self, simulation_time, time_points):
- """This class is the parent class for every class, that is supposed to generate synthetic data.
- Args:
- simulation_time (int): Real time for that the synthetic data is supposed to be generated in days.
- time_points (int): Number of time sample points.
- """
- self.t = np.linspace(0, simulation_time, time_points)
- self.data = None
- self.generated = False
- def differential_eq(self):
- """In this function the differential equation of the model will be implemented.
- """
- pass
- def generate(self):
- """In this function the data generation will be implemented.
- """
- self.generated = True
- def plot(self, labels: tuple):
- """Plot the data which was generated.
- Args:
- labels (tuple): The names of each curve.
- """
- if self.generated:
- fig = plt.figure(figsize=(12,12))
- ax = fig.add_subplot(111, facecolor='#dddddd', axisbelow=True)
- ax.set_facecolor('xkcd:white')
- color = ('violet', 'darkgreen', 'blue', 'red')
- for i in range(len(self.data)):
- # plot each group
- ax.plot(self.t, self.data[i], color[i], alpha=0.5, lw=2, label=labels[i], linestyle='dashed')
- ax.set_xlabel('Time per days')
- ax.set_ylabel('Number')
- ax.yaxis.set_tick_params(length=0)
- ax.xaxis.set_tick_params(length=0)
- ax.grid(which='major', c='black', lw=0.2, ls='-')
- legend = ax.legend()
- legend.get_frame().set_alpha(0.5)
- for spine in ('top', 'right', 'bottom', 'left'):
- ax.spines[spine].set_visible(False)
- plt.savefig('visualizations/synthetic_dataset.png')
- else:
- print('Data has to be generated before plotting!') # Fabienne war hier
-
- class SIR(SyntheticDeseaseData):
- def __init__(self, N=59e6, I_0=1, R_0=0, simulation_time=500, time_points=100, alpha=0.191, beta=0.05) -> None:
- """This class is able to generate synthetic data for the SIR model.
- Args:
- N (int, optional): Size of the population. Defaults to 59e6.
- I_0 (int, optional): Initial size of the infectious group. Defaults to 1.
- R_0 (int, optional): Initial size of the removed group. Defaults to 0.
- simulation_time (int, optional): Real time for that the synthetic data is supposed to be generated in days. Defaults to 500.
- time_points (int, optional): Number of time sample points. Defaults to 100.
- alpha (float, optional): Factor dictating how many people per timestep go from 'Infectious' to 'Removed'. Defaults to 0.191.
- beta (float, optional): Factor dictating how many people per timestep go from 'Susceptible' to 'Infectious'. Defaults to 0.05.
- """
- self.N = N
- self.S_0 = N - I_0 - R_0
- self.I_0 = I_0
- self.R_0 = R_0
- self.alpha = alpha
- self.beta = beta
- super().__init__(simulation_time, time_points)
- def differential_eq(self, y, t, alpha, beta):
- """In this function implements the differential equation of the SIR model will be implemented.
- Args:
- y (tuple): Vector that holds the current state of the three groups.
- t (_): not used
- alpha (_): not used
- beta (_): not used
- Returns:
- tuple: Change amount for each group.
- """
- S, I, R = y
- dSdt = -self.beta * ((S * I) / self.N) # -self.beta * S * I
- dIdt = self.beta * ((S * I) / self.N) - self.alpha * I # self.beta * S * I - self.alpha * I
- dRdt = self.alpha * I
- return dSdt, dIdt, dRdt
- def generate(self):
- """This funtion generates the data for this configuration of the SIR model.
- """
- y_0 = self.S_0, self.I_0, self.R_0
- self.data = odeint(self.differential_eq, y_0, self.t, args=(self.alpha, self.beta)).T
- super().generate()
- def plot(self):
- """Plot the data which was generated.
- """
- super().plot(('Susceptible', 'Infectious', 'Removed'))
- def save(self, name=''):
- if self.generated:
- COVID_Data = np.asarray([self.t, *self.data])
- np.savetxt('datasets/SIR_data.csv', COVID_Data, delimiter=",")
- else:
- print('Data has to be generated before plotting!')
-
- class SIDR(SyntheticDeseaseData):
- def __init__(self, N=59e6, I_0=1, D_0=0, R_0=0, simulation_time=500, time_points=100, alpha=0.191, beta=0.05, gamma=0.0294) -> None:
- """This class is able to generate synthetic data for the SIDR model.
- Args:
- N (int, optional): Size of the population. Defaults to 59e6.
- I_0 (int, optional): Initial size of the infectious group. Defaults to 1.
- D_0 (int, optional): Initial size of the dead group. Defaults to 0.
- R_0 (int, optional): Initial size of the recovered group. Defaults to 0.
- simulation_time (int, optional): Real time for that the synthetic data is supposed to be generated in days. Defaults to 500.
- time_points (int, optional): Number of time sample points. Defaults to 100.
- alpha (float, optional): Factor dictating how many people per timestep go from 'Susceptible' to 'Infectious'. Defaults to 0.191.
- beta (float, optional): Factor dictating how many people per timestep go from 'Infectious' to 'Dead'. Defaults to 0.05.
- gamma (float, optional): Factor dictating how many people per timestep go from 'Infectious' to 'Recovered'. Defaults to 0.0294.
- """
- self.N = N
- self.S_0 = N - I_0 - D_0 - R_0
- self.I_0 = I_0
- self.D_0 = D_0
- self.R_0 = R_0
- self.alpha = alpha
- self.beta = beta
- self.gamma = gamma
- super().__init__(simulation_time, time_points)
-
- def differential_eq(self, y, t, alpha, beta, gamma):
- """In this function implements the differential equation of the SIDR model will be implemented.
- Args:
- y (tuple): Vector that holds the current state of the three groups.
- t (_): not used
- alpha (_): not used
- beta (_): not used
- gamma (_): not used
- Returns:
- tuple: Change amount for each group.
- """
- S, I, D, R = y
- dSdt = - (self.alpha / self.N) * S * I
- dIdt = (self.alpha / self.N) * S * I - self.beta * I - self.gamma * I
- dDdt = self.gamma * I
- dRdt = self.beta * I
- return dSdt, dIdt, dDdt, dRdt
- def generate(self):
- """This funtion generates the data for this configuration of the SIR model.
- """
- y_0 = self.S_0, self.I_0, self.D_0, self.R_0
- self.data = odeint(self.differential_eq, y_0, self.t, args=(self.alpha, self.beta, self.gamma)).T
- super().generate()
- def plot(self):
- """Plot the data which was generated.
- """
- super().plot(('Susceptible', 'Infectious', 'Dead', 'Recovered'))
- def save(self, name=''):
- if self.generated:
- COVID_Data = np.asarray([self.t, *self.data])
- np.savetxt('datasets/SIDR_data.csv', COVID_Data, delimiter=",")
- else:
- print('Data has to be generated before plotting!')
|