|
@@ -44,7 +44,7 @@ The parameters are set to $\alpha = \nicefrac{1}{3}$ and $\beta = \nicefrac{1}{2
|
|
|
The size of the population is $N = \expnumber{7.6}{6}$ and the initial amount of
|
|
|
infectious individuals of is $I_0 = 10$. We simulate over 150 days and get a
|
|
|
dataset of the form of~\Cref{fig:synthetic_SIR}.\\For the real-world RKI data we
|
|
|
-preprocess the row data data of each state and Germany separately using a
|
|
|
+preprocess the raw data of each state and Germany separately using a
|
|
|
recovery queue with a recovery period of 14 days. As for the population size of
|
|
|
each state we set it to the respective value counted at the end of 2019\footnote{\url{https://de.statista.com/statistik/kategorien/kategorie/8/themen/63/branche/demographie/\#overview}}.
|
|
|
The initial number of infectious individuals is set to the number of infected
|
|
@@ -117,30 +117,34 @@ setups that we describe in this section.
|
|
|
|
|
|
\subsection{Results 4}
|
|
|
\label{sec:sir:results}
|
|
|
-\begin{center}
|
|
|
- \begin{tabular}{c|cc|cc}
|
|
|
- & $\alpha$ & $\sigma(\alpha)$ & $\beta$ & $\sigma(\beta)$ \\
|
|
|
- \hline
|
|
|
- Schleswig Holstein & 0.0771 & 0.0010 & 0.0966 & 0.0013 \\
|
|
|
- Hamburg & 0.0847 & 0.0035 & 0.1077 & 0.0037 \\
|
|
|
- Niedersachsen & 0.0735 & 0.0014 & 0.0962 & 0.0018 \\
|
|
|
- Bremen & 0.0588 & 0.0018 & 0.0795 & 0.0025 \\
|
|
|
- Nordrhein-Westfalen & 0.0780 & 0.0009 & 0.1001 & 0.0011 \\
|
|
|
- Hessen & 0.0653 & 0.0016 & 0.0854 & 0.0020 \\
|
|
|
- Rheinland-Pfalz & 0.0808 & 0.0016 & 0.1036 & 0.0018 \\
|
|
|
- Baden-Württemberg & 0.0862 & 0.0014 & 0.1132 & 0.0016 \\
|
|
|
- Bayern & 0.0809 & 0.0021 & 0.1106 & 0.0027 \\
|
|
|
- Saarland & 0.0746 & 0.0021 & 0.0996 & 0.0024 \\
|
|
|
- Berlin & 0.0901 & 0.0008 & 0.1125 & 0.0008 \\
|
|
|
- Brandenburg & 0.0861 & 0.0008 & 0.1091 & 0.0010 \\
|
|
|
- Mecklenburg Vorpommern & 0.0910 & 0.0007 & 0.1167 & 0.0008 \\
|
|
|
- Sachsen & 0.0797 & 0.0017 & 0.1073 & 0.0022 \\
|
|
|
- Sachsen-Anhalt & 0.0932 & 0.0019 & 0.1207 & 0.0027 \\
|
|
|
- Thüringen & 0.0952 & 0.0011 & 0.1248 & 0.0016 \\
|
|
|
- Germany & 0.0803 & 0.0012 & 0.1044 & 0.0014 \\
|
|
|
- \end{tabular}
|
|
|
-\end{center}
|
|
|
-
|
|
|
+\begin{table}[h]
|
|
|
+ \begin{center}
|
|
|
+ \begin{tabular}{c|cc|cc}
|
|
|
+ & $\mu(\alpha)$ & $\sigma(\alpha)$ & $\mu(\beta)$ & $\sigma(\beta)$ \\
|
|
|
+ \hline
|
|
|
+ Schleswig Holstein & 0.0771 & 0.0010 & 0.0966 & 0.0013 \\
|
|
|
+ Hamburg & 0.0847 & 0.0035 & 0.1077 & 0.0037 \\
|
|
|
+ Niedersachsen & 0.0735 & 0.0014 & 0.0962 & 0.0018 \\
|
|
|
+ Bremen & 0.0588 & 0.0018 & 0.0795 & 0.0025 \\
|
|
|
+ Nordrhein-Westfalen & 0.0780 & 0.0009 & 0.1001 & 0.0011 \\
|
|
|
+ Hessen & 0.0653 & 0.0016 & 0.0854 & 0.0020 \\
|
|
|
+ Rheinland-Pfalz & 0.0808 & 0.0016 & 0.1036 & 0.0018 \\
|
|
|
+ Baden-Württemberg & 0.0862 & 0.0014 & 0.1132 & 0.0016 \\
|
|
|
+ Bayern & 0.0809 & 0.0021 & 0.1106 & 0.0027 \\
|
|
|
+ Saarland & 0.0746 & 0.0021 & 0.0996 & 0.0024 \\
|
|
|
+ Berlin & 0.0901 & 0.0008 & 0.1125 & 0.0008 \\
|
|
|
+ Brandenburg & 0.0861 & 0.0008 & 0.1091 & 0.0010 \\
|
|
|
+ Mecklenburg Vorpommern & 0.0910 & 0.0007 & 0.1167 & 0.0008 \\
|
|
|
+ Sachsen & 0.0797 & 0.0017 & 0.1073 & 0.0022 \\
|
|
|
+ Sachsen-Anhalt & 0.0932 & 0.0019 & 0.1207 & 0.0027 \\
|
|
|
+ Thüringen & 0.0952 & 0.0011 & 0.1248 & 0.0016 \\
|
|
|
+ Germany & 0.0803 & 0.0012 & 0.1044 & 0.0014 \\
|
|
|
+ \end{tabular}
|
|
|
+ \caption{Mean and standard variation across the 5 iterations, that we
|
|
|
+ conducted for each German state and Germany as the whole country.}
|
|
|
+ \label{table:alpha_beta}
|
|
|
+ \end{center}
|
|
|
+\end{table}
|
|
|
\begin{figure}[h]
|
|
|
\centering
|
|
|
\includegraphics[width=\textwidth]{mean_std_alpha_beta_res.pdf}
|
|
@@ -164,7 +168,84 @@ are described in~\Cref{sec:pinn:rsir}.
|
|
|
\label{sec:rsir:setup}
|
|
|
In this section we describe the choice of parameters and configuration for data
|
|
|
generation, preprocessing and the neural networks. We use these setups to train
|
|
|
-the PINNs to find the reproduction number on both synthetic and real-world data.
|
|
|
+the PINNs to find the reproduction number on both synthetic and real-world data.\\
|
|
|
+
|
|
|
+For validation reasons we create a synthetic dataset, by setting the parameters
|
|
|
+of $\alpha$ and $\beta$ each to a specific value, and solving~\Cref{eq:modSIR}
|
|
|
+for a given time interval. We set $\alpha=\nicefrac{1}{3}$ and
|
|
|
+$\beta=\nicefrac{1}{2}$ as well as the population size $N=\expnumber{7.6}{6}$
|
|
|
+and the initial amount of infected people to $I_0=10$. Furthermore, we set our
|
|
|
+simulated time span to 150 days.We will use this dataset to show, that our
|
|
|
+method is working on a simple and minimal dataset.\\ For the real-world data we
|
|
|
+we processed the data of the dataset \emph{COVID-19-Todesfälle in Deutschland}
|
|
|
+to extract the number of infections in the whole of Germany, while we used the
|
|
|
+data of \emph{SARS-CoV-2 Infektionen in Deutschland} for the German states. For
|
|
|
+the preprocessing we use a constant rate for $\alpha$ to move individual into
|
|
|
+the removed compartment. First we choose $\alpha = \nicefrac{1}{14}$ as this is
|
|
|
+covers the time of recovery\footnote{\url{https://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland.git}}.
|
|
|
+Second we use $\alpha=\nicefrac{1}{5}$ since the peak of infectiousness is
|
|
|
+reached right in front or at 5 days into the infection\footnote{\url{https://www.infektionsschutz.de/coronavirus/fragen-und-antworten/ansteckung-uebertragung-und-krankheitsverlauf/}}.
|
|
|
+Just as in~\Cref{sec:sir} we set the population size $N$ of each state and
|
|
|
+Germany to the corresponding size at the end of 2019. Also, for the same reason
|
|
|
+we restrict the data points to an interval of 1200 days starting from March 09.
|
|
|
+2020.
|
|
|
+\begin{figure}[h]
|
|
|
+ %\centering
|
|
|
+ \setlength{\unitlength}{1cm} % Set the unit length for coordinates
|
|
|
+ \begin{picture}(12, 9.5) % Specify the size of the picture environment (width, height)
|
|
|
+ \put(1.5, 4.5){
|
|
|
+ \begin{subfigure}{0.3\textwidth}
|
|
|
+ \centering
|
|
|
+ \includegraphics[width=\textwidth]{SIR_synth.pdf}
|
|
|
+ \label{fig:synthetic_I}
|
|
|
+ \end{subfigure}
|
|
|
+ }
|
|
|
+ \put(8, 4.5){
|
|
|
+ \begin{subfigure}{0.3\textwidth}
|
|
|
+ \centering
|
|
|
+ \includegraphics[width=\textwidth]{datasets_states/Germany_SIR_14.pdf}
|
|
|
+ \label{fig:germany_I}
|
|
|
+ \end{subfigure}
|
|
|
+ }
|
|
|
+ \put(0, 0){
|
|
|
+ \begin{subfigure}{0.3\textwidth}
|
|
|
+ \centering
|
|
|
+ \includegraphics[width=\textwidth]{datasets_states/Schleswig_Holstein_SIR_14.pdf}
|
|
|
+ \label{fig:schleswig_holstein_I}
|
|
|
+ \end{subfigure}
|
|
|
+ }
|
|
|
+ \put(4.75, 0){
|
|
|
+ \begin{subfigure}{0.3\textwidth}
|
|
|
+ \centering
|
|
|
+ \includegraphics[width=\textwidth]{datasets_states/Berlin_SIR_14.pdf}
|
|
|
+ \label{fig:berlin_I}
|
|
|
+ \end{subfigure}
|
|
|
+ }
|
|
|
+ \put(9.5, 0){
|
|
|
+ \begin{subfigure}{0.3\textwidth}
|
|
|
+ \centering
|
|
|
+ \includegraphics[width=\textwidth]{datasets_states/Thueringen_SIR_14.pdf}
|
|
|
+ \label{fig:thüringen_I}
|
|
|
+ \end{subfigure}
|
|
|
+ }
|
|
|
+
|
|
|
+ \end{picture}
|
|
|
+ \caption{Synthetic and real-world training data. The synthetic data is
|
|
|
+ generated with $\alpha=\nicefrac{1}{3}$ and $\beta=\nicefrac{1}{2}$
|
|
|
+ and~\Cref{eq:modSIR}. The Germany data is taken from the death case
|
|
|
+ data set. Exemplatory we show illustrations of the datasets of Schleswig
|
|
|
+ Holstein, Berlin, and Thuringia. For the other states see~\Cref{chap:appendix} }
|
|
|
+ \label{fig:datasets}
|
|
|
+\end{figure}
|
|
|
+
|
|
|
+For this task the chosen architecture of the neural network consists of 4 hidden
|
|
|
+layers with each 100 neurons. The activation function is the tangens
|
|
|
+hyperbolicus function tanh. We weight the data loss with a weight of
|
|
|
+$\expnumber{1}{6}$ into the total loss. The model is trained using a base
|
|
|
+learning rate of $\expnumber{1}{-3}$ with the same scheduler and optimizer as
|
|
|
+we use in~\Cref{sec:sir:setup}. We train the model for 20000 epochs. Also, we
|
|
|
+conduct each experiment 15 times to reduce the standard deviation.
|
|
|
+
|
|
|
|
|
|
|
|
|
% -------------------------------------------------------------------
|