Browse Source

begin results for SIR

Phillip Rothenbeck 9 months ago
parent
commit
69c6e32390
5 changed files with 126 additions and 20 deletions
  1. 2 1
      .vscode/settings.json
  2. 124 19
      chapters/chap04/chap04.tex
  3. BIN
      images/mean_std_alpha_beta_res.pdf
  4. BIN
      images/reproducability.pdf
  5. BIN
      thesis.pdf

+ 2 - 1
.vscode/settings.json

@@ -1,5 +1,6 @@
 {
 {
     "cSpell.words": [
     "cSpell.words": [
-        "PINN"
+        "PINN",
+        "Thuringia"
     ]
     ]
 }
 }

+ 124 - 19
chapters/chap04/chap04.tex

@@ -98,7 +98,7 @@ in which the COVID-19 disease was the most active and severe.
         and~\Cref{eq:modSIR}. The Germany data is taken from the death case
         and~\Cref{eq:modSIR}. The Germany data is taken from the death case
         data set. Exemplatory we show illustrations of the datasets of Schleswig
         data set. Exemplatory we show illustrations of the datasets of Schleswig
         Holstein, Berlin, and Thuringia. For the other states see~\Cref{chap:appendix} }
         Holstein, Berlin, and Thuringia. For the other states see~\Cref{chap:appendix} }
-    \label{fig:datasets}
+    \label{fig:datasets_sir}
 \end{figure}
 \end{figure}
 
 
 The PINN that we employ consists of seven hidden layers with twenty neurons
 The PINN that we employ consists of seven hidden layers with twenty neurons
@@ -117,6 +117,52 @@ setups that we describe in this section.
 
 
 \subsection{Results    4}
 \subsection{Results    4}
 \label{sec:sir:results}
 \label{sec:sir:results}
+
+\begin{figure}[t]
+    \centering
+    \includegraphics[width=0.7\textwidth]{reproducability.pdf}
+    \caption{Visualization of all 5 predictions for the synthetic dataset,
+        compared to the true values of $\alpha = \nicefrac{1}{3}$ and $\beta = \nicefrac{1}{2}$}
+    \label{fig:reprod}
+\end{figure}
+
+In this section we describe the results, that we obtain from the conducted
+experiments, that we describe in the preceding section. First we show the
+results for the synthetic dataset and look at the accuracy and reproducibility.
+Then we present and discuss the results for the German states and Germany.\\
+
+The results of the experiment regarding the synthetic data can be seen
+in~\Cref{table:alpha_beta_synth} and in~\Cref{fig:reprod}.~\Cref{fig:reprod}
+shows the values of $\beta$ and $\alpha$ of each iteration compared to the true
+values of $\beta=\nicefrac{1}{2}$ and $\alpha=\nicefrac{1}{3}$. In~\Cref{table:alpha_beta_synth}
+we present the mean $\mu$ and standard variation $\sigma$ of both values across
+all 5 iterations.\\
+
+\begin{table}[h]
+    \begin{center}
+        \begin{tabular}{ccc|ccc}
+            true $\alpha$ & $\mu(\alpha)$ & $\sigma(\alpha)$ & true $\beta$ & $\mu(\beta)$ & $\sigma(\beta)$ \\
+            \hline
+            0.3333        & 0.3334        & 0.0011           & 0.5000       & 0.5000       & 0.0017          \\
+        \end{tabular}
+        \caption{The mean $\mu$ and standard variation $\sigma$ across the 5
+            independent iterations of training our PINNs with the synthetic dataset.}
+        \label{table:alpha_beta_synth}
+    \end{center}
+\end{table}
+From the results we can see that the model is able to approximate the correct
+parameters for the small, synthetic dataset in each of the 5 iterations. Even
+though the predicted value is never exactly correct, the standard deviation is
+negligible small and taking the mean of multiple iterations yields an almost
+perfect result.\\
+
+In~\Cref{table:alpha_beta} we present the results of the training for the
+real-world data. These are presented from top to bottom, in the order of the
+community identification number, with the last entry being Germany. $\mu$ and
+$\sigma$ are both calculated across all 5 iterations of our experiment. We can
+see that the values of \emph{Hamburg} have the highest standard deviation, while
+\emph{Mecklenburg Vorpommern} has the smallest $\sigma$.\\
+
 \begin{table}[h]
 \begin{table}[h]
     \begin{center}
     \begin{center}
         \begin{tabular}{c|cc|cc}
         \begin{tabular}{c|cc|cc}
@@ -145,6 +191,28 @@ setups that we describe in this section.
         \label{table:alpha_beta}
         \label{table:alpha_beta}
     \end{center}
     \end{center}
 \end{table}
 \end{table}
+
+In~\Cref{fig:alpha_beta_mean_std} we visualize the means and standard variations
+in contrast to the national values. The states with the highest transmission rate
+values are Thuringia, Saxony Anhalt and Mecklenburg West-Pomerania. It is also,
+visible that all six of the eastern states have a higher transmission rate than
+Germany. These results may be explainable with the ratio of vaccinated individuals\footnote{\url{https://impfdashboard.de/}}.
+The eastern state have a comparably low complete vaccination ratio, accept for
+Berlin. While Berlin has a moderate vaccination ratio, it is also a hub of
+mobility, which means that contact between individuals happens much more often. This is also a reason for Hamburg being a state with an above national standard rate of transmission.
+\\
+
+
+
+We visualize these numbers in~\Cref{fig:alpha_beta_mean_std},
+where all means and standard variations are plotted as points, while the values
+for Germany are also plotted as lines to make a classification easier. It is
+visible that Hamburg, Baden-Württemberg, Bayern and all six of the states that
+lie in the eastern part of Germany have a higher transmission rate $\beta$ than
+overall Germany. Furthermore, it can be observed, that all values for the
+recovery $\alpha$ seem to be correlating to the value of $\beta$, which can be
+explained with the assumption that we make when we preprocess the data using the
+recovery queue by setting the recovery time to 14 days.
 \begin{figure}[h]
 \begin{figure}[h]
     \centering
     \centering
     \includegraphics[width=\textwidth]{mean_std_alpha_beta_res.pdf}
     \includegraphics[width=\textwidth]{mean_std_alpha_beta_res.pdf}
@@ -192,50 +260,87 @@ we restrict the data points to an interval of 1200 days starting from March 09.
 \begin{figure}[h]
 \begin{figure}[h]
     %\centering
     %\centering
     \setlength{\unitlength}{1cm} % Set the unit length for coordinates
     \setlength{\unitlength}{1cm} % Set the unit length for coordinates
-    \begin{picture}(12, 9.5) % Specify the size of the picture environment (width, height)
-        \put(1.5, 4.5){
+    \begin{picture}(12, 14.5) % Specify the size of the picture environment (width, height)
+        \put(0, 10){
             \begin{subfigure}{0.3\textwidth}
             \begin{subfigure}{0.3\textwidth}
                 \centering
                 \centering
-                \includegraphics[width=\textwidth]{SIR_synth.pdf}
+                \includegraphics[width=\textwidth]{I_synth.pdf}
+                \caption{Synthetic data}
                 \label{fig:synthetic_I}
                 \label{fig:synthetic_I}
             \end{subfigure}
             \end{subfigure}
         }
         }
-        \put(8, 4.5){
+        \put(4.75, 10){
             \begin{subfigure}{0.3\textwidth}
             \begin{subfigure}{0.3\textwidth}
                 \centering
                 \centering
-                \includegraphics[width=\textwidth]{datasets_states/Germany_SIR_14.pdf}
-                \label{fig:germany_I}
+                \includegraphics[width=\textwidth]{datasets_states/Germany_I_14.pdf}
+                \caption{Germany with $\alpha=\nicefrac{1}{14}$}
+                \label{fig:germany_I_14}
+            \end{subfigure}
+        }
+        \put(9.5, 10){
+            \begin{subfigure}{0.3\textwidth}
+                \centering
+                \includegraphics[width=\textwidth]{datasets_states/Germany_I_5.pdf}
+                \caption{Germany with $\alpha=\nicefrac{1}{5}$}
+                \label{fig:germany_I_5}
+            \end{subfigure}
+        }
+        \put(0, 5){
+            \begin{subfigure}{0.3\textwidth}
+                \centering
+                \includegraphics[width=\textwidth]{datasets_states/Nordrhein_Westfalen_I_14.pdf}
+                \caption{NRW with $\alpha=\nicefrac{1}{14}$}
+                \label{fig:schleswig_holstein_I_14}
+            \end{subfigure}
+        }
+        \put(4.75, 5){
+            \begin{subfigure}{0.3\textwidth}
+                \centering
+                \includegraphics[width=\textwidth]{datasets_states/Hessen_I_14.pdf}
+                \caption{Hessen with $\alpha=\nicefrac{1}{14}$}
+                \label{fig:berlin_I_14}
+            \end{subfigure}
+        }
+        \put(9.5, 5){
+            \begin{subfigure}{0.3\textwidth}
+                \centering
+                \includegraphics[width=\textwidth]{datasets_states/Thueringen_I_14.pdf}
+                \caption{Thüringen with $\alpha=\nicefrac{1}{14}$}
+                \label{fig:thüringen_I_14}
             \end{subfigure}
             \end{subfigure}
         }
         }
         \put(0, 0){
         \put(0, 0){
             \begin{subfigure}{0.3\textwidth}
             \begin{subfigure}{0.3\textwidth}
                 \centering
                 \centering
-                \includegraphics[width=\textwidth]{datasets_states/Schleswig_Holstein_SIR_14.pdf}
-                \label{fig:schleswig_holstein_I}
+                \includegraphics[width=\textwidth]{datasets_states/Nordrhein_Westfalen_I_5.pdf}
+                \caption{NRW with $\alpha=\nicefrac{1}{5}$}
+                \label{fig:schleswig_holstein_I_5}
             \end{subfigure}
             \end{subfigure}
         }
         }
         \put(4.75, 0){
         \put(4.75, 0){
             \begin{subfigure}{0.3\textwidth}
             \begin{subfigure}{0.3\textwidth}
                 \centering
                 \centering
-                \includegraphics[width=\textwidth]{datasets_states/Berlin_SIR_14.pdf}
-                \label{fig:berlin_I}
+                \includegraphics[width=\textwidth]{datasets_states/Hessen_I_5.pdf}
+                \caption{Hessen with $\alpha=\nicefrac{1}{5}$}
+                \label{fig:berlin_I_5}
             \end{subfigure}
             \end{subfigure}
         }
         }
         \put(9.5, 0){
         \put(9.5, 0){
             \begin{subfigure}{0.3\textwidth}
             \begin{subfigure}{0.3\textwidth}
                 \centering
                 \centering
-                \includegraphics[width=\textwidth]{datasets_states/Thueringen_SIR_14.pdf}
-                \label{fig:thüringen_I}
+                \includegraphics[width=\textwidth]{datasets_states/Thueringen_I_5.pdf}
+                \caption{Thüringen with $\alpha=\nicefrac{1}{5}$}
+                \label{fig:thüringen_I_5}
             \end{subfigure}
             \end{subfigure}
         }
         }
 
 
     \end{picture}
     \end{picture}
-    \caption{Synthetic and real-world training data. The synthetic data is
-        generated with $\alpha=\nicefrac{1}{3}$ and $\beta=\nicefrac{1}{2}$
-        and~\Cref{eq:modSIR}. The Germany data is taken from the death case
-        data set. Exemplatory we show illustrations of the datasets of Schleswig
-        Holstein, Berlin, and Thuringia. For the other states see~\Cref{chap:appendix} }
-    \label{fig:datasets}
+    \caption{Visualization of the datasets for the training process.
+        Illustration (a) is the synthetic data. For the real-world data we use a
+        dataset with $\alpha=\nicefrac{1}{14}$ and $\alpha=\nicefrac{1}{5}$ each.
+        (b) and (c) for Germany, (d) and (g) for Nordrhein-Westfalen (NRW), (e) and (h)
+        for Hessen, and (f) and (i) for Thüringen.}
+    \label{fig:i_datasets}
 \end{figure}
 \end{figure}
 
 
 For this task the chosen architecture of the neural network consists of 4 hidden
 For this task the chosen architecture of the neural network consists of 4 hidden

BIN
images/mean_std_alpha_beta_res.pdf


BIN
images/reproducability.pdf


BIN
thesis.pdf