暫無描述

Alexander Freytag 8ab6d02b44 changes on readme file 11 年之前
data b4d4c73367 added Matlab demo around mex-interfaces 11 年之前
COPYING 9a56179e76 added felzenszwalb code 12 年之前
Makefile 9a56179e76 added felzenszwalb code 12 年之前
README 8ab6d02b44 changes on readme file 11 年之前
compileFelzenszwalbSegmentation.m 1de245ec3d added compilation program 11 年之前
convolve.h 9a56179e76 added felzenszwalb code 12 年之前
demoFelzenszwalbSegmentation.m b4d4c73367 added Matlab demo around mex-interfaces 11 年之前
disjoint-set.h 9a56179e76 added felzenszwalb code 12 年之前
filter.h 9a56179e76 added felzenszwalb code 12 年之前
image.h 9a56179e76 added felzenszwalb code 12 年之前
imconv.h 9a56179e76 added felzenszwalb code 12 年之前
imutil.h 9a56179e76 added felzenszwalb code 12 年之前
misc.h 9a56179e76 added felzenszwalb code 12 年之前
pnmfile.h 9a56179e76 added felzenszwalb code 12 年之前
segment-graph.h 962eb0a405 clean-up, code adaptation towards matlab-suitable data sizes, code commentations, stable version 11 年之前
segment-image-labelOutput.h 962eb0a405 clean-up, code adaptation towards matlab-suitable data sizes, code commentations, stable version 11 年之前
segment-image.h 962eb0a405 clean-up, code adaptation towards matlab-suitable data sizes, code commentations, stable version 11 年之前
segment.cpp 9a56179e76 added felzenszwalb code 12 年之前
segmentFelzenszwalb.cpp 962eb0a405 clean-up, code adaptation towards matlab-suitable data sizes, code commentations, stable version 11 年之前
segmentFelzenszwalb.m 810368e721 minor change on default value 12 年之前

README

==================== C++ =================================

Implementation of the segmentation algorithm described in:

Efficient Graph-Based Image Segmentation
Pedro F. Felzenszwalb and Daniel P. Huttenlocher
International Journal of Computer Vision, 59(2) September 2004.

The program [segment.cpp, note by A. Freytag] takes a color image (PPM format) and produces a segmentation
with a random color assigned to each region.

1) Type "make" to compile "segment".

2) Run "segment sigma k min input output".

The parameters are: (see the paper for details)

sigma: Used to smooth the input image before segmenting it.
k: Value for the threshold function.
min: Minimum component size enforced by post-processing.
input: Input image.
output: Output image.

Typical parameters are sigma = 0.5, k = 500, min = 20.
Larger values for k result in larger components in the result.


NOTE ( by Alexander Freytag )
- only images with less then std::numeric_limits::max() pixels are supported properly!


=============== MATLAB ==============

[Compilation]
- run compileFelzenszwalbSegmentation.m

[Demo]
- run demoFelzenszwalbSegmentation.m (requires matlabs GUI to show images and segmentation results)
- demo file shows how to setup variables, and how to call the underlying mex functions