|
@@ -0,0 +1,1854 @@
|
|
|
+/**
|
|
|
+ * @file SemSegCsurka.cpp
|
|
|
+ * @brief semantic segmentation using the method from Csurka08
|
|
|
+ * @author Björn Fröhlich
|
|
|
+ * @date 04/24/2009
|
|
|
+ */
|
|
|
+#include <iostream>
|
|
|
+
|
|
|
+#include "SemSegCsurka.h"
|
|
|
+
|
|
|
+#include "objrec/baselib/ICETools.h"
|
|
|
+
|
|
|
+#include "core/image/Filter.h"
|
|
|
+
|
|
|
+#include <sstream>
|
|
|
+
|
|
|
+using namespace std;
|
|
|
+using namespace NICE;
|
|
|
+using namespace OBJREC;
|
|
|
+
|
|
|
+#undef DEBUG_CSURK
|
|
|
+
|
|
|
+SemSegCsurka::SemSegCsurka ( const Config *conf,
|
|
|
+ const MultiDataset *md )
|
|
|
+ : SemanticSegmentation ( conf, & ( md->getClassNames ( "train" ) ) )
|
|
|
+{
|
|
|
+ this->conf = conf;
|
|
|
+
|
|
|
+ opSiftImpl = conf->gS ( "Descriptor", "implementation", "VANDESANDE" );
|
|
|
+ readfeat = conf->gB ( "Descriptor", "read", true );
|
|
|
+ writefeat = conf->gB ( "Descriptor", "write", true );
|
|
|
+#ifdef DEBUG_CSURK
|
|
|
+ clog << "[log] SemSegCsurka::SemSegCsurka: OppenentSift implemenation: " << opSiftImpl << endl;
|
|
|
+#endif
|
|
|
+
|
|
|
+ save_cache = conf->gB ( "FPCPixel", "save_cache", true );
|
|
|
+ read_cache = conf->gB ( "FPCPixel", "read_cache", false );
|
|
|
+ cache = conf->gS ( "cache", "root", "" );
|
|
|
+ sigmaweight = conf->gD ( "SemSegCsurka", "sigmaweight", 0.6 );
|
|
|
+
|
|
|
+ dim = conf->gI ( "SemSegCsurka", "pcadim", 50 );
|
|
|
+
|
|
|
+ usepca = conf->gB ( "SemSegCsurka", "usepca", true );
|
|
|
+ calcpca = conf->gB ( "SemSegCsurka", "calcpca", false );
|
|
|
+
|
|
|
+ usegmm = conf->gB ( "SemSegCsurka", "usegmm", false );
|
|
|
+ norm = conf->gB ( "SemSegCsurka", "normalize", false );
|
|
|
+ usefisher = conf->gB ( "SemSegCsurka", "usefisher", false );
|
|
|
+ dogmm = conf->gB ( "SemSegCsurka", "dogmm", false );
|
|
|
+ gaussians = conf->gI ( "SemSegCsurka", "gaussians", 50 );
|
|
|
+
|
|
|
+ usekmeans = conf->gB ( "SemSegCsurka", "usekmeans", false );
|
|
|
+ kmeansfeat = conf->gI ( "SemSegCsurka", "kmeansfeat", 50 );
|
|
|
+ kmeanshard = conf->gB ( "SemSegCsurka", "kmeanshard", false );
|
|
|
+
|
|
|
+ cname = conf->gS ( "SemSegCsurka", "classifier", "RandomForests" );
|
|
|
+ anteil = conf->gD ( "SemSegCsurka", "anteil", 1.0 );
|
|
|
+ userellocprior = conf->gB ( "SemSegCsurka", "rellocfeat", false );
|
|
|
+ bool usesrg = conf->gB ( "SemSegCsurka", "usesrg", false );
|
|
|
+
|
|
|
+ useregions = conf->gB ( "SemSegCsurka", "useregions", true );
|
|
|
+ savesteps = conf->gB ( "SemSegCsurka", "savesteps", true );
|
|
|
+ bool usegcopt = conf->gB ( "SemSegCsurka", "usegcopt", false );
|
|
|
+
|
|
|
+ bestclasses = conf->gI ( "SemSegCsurka", "bestclasses", 0 );
|
|
|
+
|
|
|
+ smoothhl = conf->gB ( "SemSegCsurka", "smoothhl", false );
|
|
|
+ smoothfactor = conf->gD ( "SemSegCsurka", "smoothfactor", 1.0 );
|
|
|
+
|
|
|
+ usecolorfeats = conf->gB("SemSegCsurka", "usecolorfeats", false);
|
|
|
+
|
|
|
+ string rsMethod = conf->gS("SemSegCsurka", "segmentation", "meanshift");
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ g = NULL;
|
|
|
+ k = NULL;
|
|
|
+ relloc = NULL;
|
|
|
+ srg = NULL;
|
|
|
+ gcopt = NULL;
|
|
|
+
|
|
|
+ if ( !useregions && ( userellocprior || usesrg ) )
|
|
|
+ {
|
|
|
+ cerr << "relative location priors and super region growing are just supported in combination with useregions" << endl;
|
|
|
+ exit ( 1 );
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( usepca )
|
|
|
+ pca = PCA ( dim );
|
|
|
+
|
|
|
+ RegionSegmentationMethod * tmpseg;
|
|
|
+ if(rsMethod == "meanshift")
|
|
|
+ tmpseg = new RSMeanShift ( conf );
|
|
|
+ else
|
|
|
+ tmpseg = new RSGraphBased(conf);
|
|
|
+
|
|
|
+ if(save_cache)
|
|
|
+ seg = new RSCache ( conf, tmpseg );
|
|
|
+ else
|
|
|
+ seg = tmpseg;
|
|
|
+
|
|
|
+ if ( userellocprior )
|
|
|
+ relloc = new RelativeLocationPrior ( conf );
|
|
|
+ else
|
|
|
+ relloc = NULL;
|
|
|
+
|
|
|
+ if ( usesrg )
|
|
|
+ srg = new PPSuperregion ( conf );
|
|
|
+ else
|
|
|
+ srg = NULL;
|
|
|
+
|
|
|
+ if ( usegcopt )
|
|
|
+ gcopt = new PPGraphCut ( conf );
|
|
|
+ else
|
|
|
+ gcopt = NULL;
|
|
|
+
|
|
|
+ classifier = NULL;
|
|
|
+ vclassifier = NULL;
|
|
|
+ if ( cname == "RandomForests" )
|
|
|
+ classifier = new FPCRandomForests ( conf, "ClassifierForest" );
|
|
|
+ else if ( cname == "SMLR" )
|
|
|
+ classifier = new FPCSMLR ( conf, "ClassifierSMLR" );
|
|
|
+ else
|
|
|
+ vclassifier = CSGeneric::selectVecClassifier ( conf, "main" );
|
|
|
+ //classifier = new FPCSparseMultinomialLogisticRegression(conf, "ClassifierSMLR");
|
|
|
+
|
|
|
+ if(classifier != NULL)
|
|
|
+ classifier->setMaxClassNo ( classNames->getMaxClassno() );
|
|
|
+ else
|
|
|
+ vclassifier->setMaxClassNo ( classNames->getMaxClassno() );
|
|
|
+
|
|
|
+ cn = md->getClassNames ( "train" );
|
|
|
+
|
|
|
+ if ( read_cache )
|
|
|
+ {
|
|
|
+ fprintf ( stderr, "SemSegCsurka:: Reading classifier data from %s\n", ( cache+"/fpcrf.data" ).c_str() );
|
|
|
+
|
|
|
+ if(classifier != NULL)
|
|
|
+ classifier->read ( cache+"/fpcrf.data" );
|
|
|
+ else
|
|
|
+ vclassifier->read ( cache+"/veccl.data" );
|
|
|
+
|
|
|
+ if ( usepca )
|
|
|
+ {
|
|
|
+ std::string filename = cache + "/pca";
|
|
|
+ pca.read ( filename );
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( usegmm )
|
|
|
+ {
|
|
|
+ g = new GMM ( conf, gaussians );
|
|
|
+
|
|
|
+ if ( !g->loadData ( cache+"/gmm" ) )
|
|
|
+ {
|
|
|
+ cerr << "SemSegCsurka:: no gmm file found" << endl;
|
|
|
+ exit ( -1 );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else{ g = NULL; }
|
|
|
+
|
|
|
+ if ( usekmeans )
|
|
|
+ {
|
|
|
+ k = new KMeansOnline ( gaussians );
|
|
|
+ }
|
|
|
+
|
|
|
+ fprintf ( stderr, "SemSegCsurka:: successfully read\n" );
|
|
|
+
|
|
|
+ std::string filename = cache + "/rlp";
|
|
|
+
|
|
|
+ FILE *value;
|
|
|
+ value = fopen ( filename.c_str(),"r" );
|
|
|
+
|
|
|
+ if ( value==NULL )
|
|
|
+ {
|
|
|
+ trainpostprocess ( md );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ if ( userellocprior )
|
|
|
+ {
|
|
|
+ relloc->read ( filename );
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ filename = cache + "/srg";
|
|
|
+
|
|
|
+ value = fopen ( filename.c_str(),"r" );
|
|
|
+
|
|
|
+ if ( value==NULL )
|
|
|
+ {
|
|
|
+ trainpostprocess ( md );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ if ( srg != NULL )
|
|
|
+ {
|
|
|
+ srg->read ( filename );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ train ( md );
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+SemSegCsurka::~SemSegCsurka()
|
|
|
+{
|
|
|
+ // clean-up
|
|
|
+ if ( classifier != NULL )
|
|
|
+ delete classifier;
|
|
|
+ if( vclassifier !=NULL)
|
|
|
+ delete vclassifier;
|
|
|
+ if ( seg != NULL )
|
|
|
+ delete seg;
|
|
|
+
|
|
|
+ g = NULL;
|
|
|
+ if ( g != NULL )
|
|
|
+ delete g;
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegCsurka::normalize(Examples &ex)
|
|
|
+{
|
|
|
+ assert(ex.size() > 0);
|
|
|
+ if(vecmin.size() == 0)
|
|
|
+ {
|
|
|
+ for(int j = 0; j < (int)ex[0].second.vec->size(); j++)
|
|
|
+ {
|
|
|
+ double maxv = -numeric_limits<int>::max();
|
|
|
+ double minv = numeric_limits<int>::max();
|
|
|
+ for(int i = 0; i < (int)ex.size(); i++)
|
|
|
+ {
|
|
|
+ maxv = std::max(maxv,(*ex[i].second.vec)[j]);
|
|
|
+ minv = std::min(minv,(*ex[i].second.vec)[j]);
|
|
|
+ }
|
|
|
+ vecmin.push_back(minv);
|
|
|
+ vecmax.push_back(maxv);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ for(int i = 0; i < (int)ex.size(); i++)
|
|
|
+ {
|
|
|
+ for(int j = 0; j < (int)ex[i].second.vec->size(); j++)
|
|
|
+ {
|
|
|
+ (*ex[i].second.vec)[j] = ((*ex[i].second.vec)[j]-vecmin[j])/(vecmax[j]-vecmin[j]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegCsurka::convertLowToHigh ( Examples &ex, double reduce )
|
|
|
+{
|
|
|
+ cout << "converting low-level features to high-level features" << endl;
|
|
|
+
|
|
|
+ if ( reduce >= 1.0 )
|
|
|
+ {
|
|
|
+ for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
+ {
|
|
|
+ SparseVector *f = new SparseVector();
|
|
|
+
|
|
|
+ if ( usekmeans )
|
|
|
+ {
|
|
|
+ k->getDist ( *ex[i].second.vec, *f, kmeansfeat, kmeanshard );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ if ( usefisher )
|
|
|
+ g->getFisher ( *ex[i].second.vec, *f );
|
|
|
+ else
|
|
|
+ g->getProbs ( *ex[i].second.vec, *f );
|
|
|
+ }
|
|
|
+ delete ex[i].second.vec;
|
|
|
+
|
|
|
+ ex[i].second.vec = NULL;
|
|
|
+ ex[i].second.svec = f;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ srand ( time ( NULL ) );
|
|
|
+
|
|
|
+ vector<bool> del(ex.size(), false);
|
|
|
+ cout << "Example size old " << ex.size() << endl;
|
|
|
+
|
|
|
+#pragma omp parallel for
|
|
|
+ for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
+ {
|
|
|
+ double rval = ( double ) rand() / ( double ) RAND_MAX;
|
|
|
+ if ( rval < reduce )
|
|
|
+ {
|
|
|
+ SparseVector *f = new SparseVector();
|
|
|
+
|
|
|
+ if ( usekmeans )
|
|
|
+ k->getDist ( *ex[i].second.vec, *f, kmeansfeat, kmeanshard );
|
|
|
+ else
|
|
|
+ {
|
|
|
+ if ( usefisher )
|
|
|
+ g->getFisher ( *ex[i].second.vec, *f );
|
|
|
+ else
|
|
|
+ g->getProbs ( *ex[i].second.vec, *f );
|
|
|
+ }
|
|
|
+
|
|
|
+ delete ex[i].second.vec;
|
|
|
+ ex[i].second.vec = NULL;
|
|
|
+ ex[i].second.svec = f;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ del[i] = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ for ( int i = ( int ) del.size()-1; i >= 0; i-- )
|
|
|
+ {
|
|
|
+ if(del[i])
|
|
|
+ {
|
|
|
+ ex.erase ( ex.begin() +i);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ cerr << "Example size new " << ex.size() << endl;
|
|
|
+ }
|
|
|
+ cerr << "converting low-level features to high-level features finished" << endl;
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegCsurka::smoothHL ( Examples ex )
|
|
|
+{
|
|
|
+
|
|
|
+ if ( !smoothhl )
|
|
|
+ return;
|
|
|
+ assert ( ex.size() > 1 );
|
|
|
+
|
|
|
+ long long int minx = numeric_limits<long long int>::max();
|
|
|
+ long long int miny = numeric_limits<long long int>::max();
|
|
|
+ long long int maxx = -numeric_limits<long long int>::max();
|
|
|
+ long long int maxy = -numeric_limits<long long int>::max();
|
|
|
+ long long int distx = numeric_limits<long long int>::max();
|
|
|
+ long long int disty = numeric_limits<long long int>::max();
|
|
|
+
|
|
|
+ set<double> scales;
|
|
|
+ for ( int i = 0; i < (int)ex.size(); i++ )
|
|
|
+ {
|
|
|
+ scales.insert ( ex[i].second.scale );
|
|
|
+ }
|
|
|
+
|
|
|
+ map<double, int> scalepos;
|
|
|
+ int it = 0;
|
|
|
+
|
|
|
+ for ( set<double>::const_iterator iter = scales.begin(); iter != scales.end(); ++iter, ++it )
|
|
|
+ {
|
|
|
+ scalepos.insert(make_pair(*iter, it));
|
|
|
+ }
|
|
|
+
|
|
|
+ for ( int i = 0; i < (int)ex.size(); i++ )
|
|
|
+ {
|
|
|
+ if ( minx < numeric_limits<int>::max() && ex[i].second.x - minx > 0 )
|
|
|
+ distx = std::min ( distx, ex[i].second.x - minx );
|
|
|
+ if ( miny < numeric_limits<int>::max() && ex[i].second.y - miny > 0 )
|
|
|
+ disty = std::min ( disty, ex[i].second.y - miny );
|
|
|
+ minx = std::min ( (long long int)ex[i].second.x, minx );
|
|
|
+ maxx = std::max ( (long long int)ex[i].second.x, maxx );
|
|
|
+ miny = std::min ( (long long int)ex[i].second.y, miny );
|
|
|
+ maxy = std::max ( (long long int)ex[i].second.y, maxy );
|
|
|
+ }
|
|
|
+
|
|
|
+ distx = abs ( distx );
|
|
|
+
|
|
|
+ int xsize = ( maxx - minx ) /distx +1;
|
|
|
+ int ysize = ( maxy - miny ) /disty +1;
|
|
|
+ double valx = ( ( double ) xsize-1 ) / ( double ) ( maxx - minx );
|
|
|
+ double valy = ( ( double ) ysize-1 ) / ( double ) ( maxy - miny );
|
|
|
+
|
|
|
+ //double sigma = smoothfactor;
|
|
|
+ double sigma = std::max(xsize,ysize) * smoothfactor;
|
|
|
+ //double sigma = 0.2;
|
|
|
+ cout << "sigma1: " << sigma << endl;
|
|
|
+
|
|
|
+ vector<NICE::FloatImage> imgv;
|
|
|
+ vector<NICE::FloatImage> gaussImgv;
|
|
|
+ for(int i = 0; i < (int)scalepos.size(); i++)
|
|
|
+ {
|
|
|
+ NICE::FloatImage img( xsize, ysize);
|
|
|
+ NICE::FloatImage gaussImg( xsize, ysize);
|
|
|
+ imgv.push_back(img);
|
|
|
+ gaussImgv.push_back(gaussImg);
|
|
|
+ }
|
|
|
+
|
|
|
+ for ( int d = 0; d < ex[0].second.svec->getDim(); d++ )
|
|
|
+ {
|
|
|
+ //TODO: max und min dynamisches bestimmen
|
|
|
+
|
|
|
+ for(int i = 0; i < (int)scalepos.size(); i++)
|
|
|
+ {
|
|
|
+ imgv[i].set(0.0);
|
|
|
+ gaussImgv[i].set(0.0);
|
|
|
+ }
|
|
|
+
|
|
|
+ for ( int i = 0; i < (int)ex.size(); i++ )
|
|
|
+ {
|
|
|
+ int xpos = ( ex[i].second.x - minx ) *valx;
|
|
|
+ int ypos = ( ex[i].second.y - miny ) *valy;
|
|
|
+
|
|
|
+ double val = ex[i].second.svec->get ( d );
|
|
|
+ // refactor-nice.pl: check this substitution
|
|
|
+ // old: PutValD ( imgv[scalepos[ex[i].second.scale]],xpos,ypos,val);
|
|
|
+ imgv[scalepos[ex[i].second.scale]].setPixel(xpos,ypos,val);
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ for(int y = 0; y < ysize; y++)
|
|
|
+ {
|
|
|
+ for(int x = 0; x < xsize; x++)
|
|
|
+ {
|
|
|
+ // refactor-nice.pl: check this substitution
|
|
|
+ // old: double val = GetValD(img,x,y);
|
|
|
+ double val = img.getPixel(x,y);
|
|
|
+ double c = 0.0;
|
|
|
+ if(val == 0.0)
|
|
|
+ {
|
|
|
+ if(x > 0)
|
|
|
+ {
|
|
|
+ // refactor-nice.pl: check this substitution
|
|
|
+ // old: val+=GetValD(img,x-1,y);
|
|
|
+ val+=img.getPixel(x-1,y);
|
|
|
+ c+=1.0;
|
|
|
+ }
|
|
|
+ if(y > 0)
|
|
|
+ {
|
|
|
+ // refactor-nice.pl: check this substitution
|
|
|
+ // old: val+=GetValD(img,x,y-1);
|
|
|
+ val+=img.getPixel(x,y-1);
|
|
|
+ c+=1.0;
|
|
|
+ }
|
|
|
+ if(x < xsize-1)
|
|
|
+ {
|
|
|
+ // refactor-nice.pl: check this substitution
|
|
|
+ // old: val+=GetValD(img,x+1,y);
|
|
|
+ val+=img.getPixel(x+1,y);
|
|
|
+ c+=1.0;
|
|
|
+ }
|
|
|
+ if(y < ysize-1)
|
|
|
+ {
|
|
|
+ // refactor-nice.pl: check this substitution
|
|
|
+ // old: val+=GetValD(img,x,y+1);
|
|
|
+ val+=img.getPixel(x,y+1);
|
|
|
+ c+=1.0;
|
|
|
+ }
|
|
|
+ // refactor-nice.pl: check this substitution
|
|
|
+ // old: PutValD(img,x,y,val/c);
|
|
|
+ img.setPixel(x,y,val/c);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }*/
|
|
|
+
|
|
|
+ for(int i = 0; i < (int)imgv.size(); i++)
|
|
|
+ filterGaussSigmaApproximate<float,float,float>( imgv[i], sigma, &gaussImgv[i] );
|
|
|
+
|
|
|
+ for ( int i = 0; i < (int)ex.size(); i++ )
|
|
|
+ {
|
|
|
+ int xpos = ( ex[i].second.x - minx ) *valx;
|
|
|
+ int ypos = ( ex[i].second.y - miny ) *valy;
|
|
|
+ // refactor-nice.pl: check this substitution
|
|
|
+ // old: double val = GetValD ( gaussImgv[scalepos[ex[i].second.scale]], xpos, ypos );
|
|
|
+ double val = gaussImgv[scalepos[ex[i].second.scale]].getPixel(xpos,ypos);
|
|
|
+
|
|
|
+ if ( fabs ( val ) < 1e-7 )
|
|
|
+ {
|
|
|
+ if ( ex[i].second.svec->get ( d ) != 0.0 )
|
|
|
+ {
|
|
|
+ ex[i].second.svec->erase ( d );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ ( *ex[i].second.svec ) [d] = val;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegCsurka::initializePCA ( Examples &ex )
|
|
|
+{
|
|
|
+#ifdef DEBUG
|
|
|
+ cerr << "start computing pca" << endl;
|
|
|
+#endif
|
|
|
+ std::string filename = cache + "/pca";
|
|
|
+ FILE *value;
|
|
|
+ value = fopen ( filename.c_str(),"r" );
|
|
|
+
|
|
|
+ if ( value==NULL || calcpca )
|
|
|
+ {
|
|
|
+ srand ( time ( NULL ) );
|
|
|
+
|
|
|
+ int featsize = ( int ) ex.size();
|
|
|
+ int maxfeatures = dim*10;
|
|
|
+ int olddim = ex[0].second.vec->size();
|
|
|
+
|
|
|
+ maxfeatures = std::min ( maxfeatures, featsize );
|
|
|
+
|
|
|
+ NICE::Matrix features ( maxfeatures, olddim );
|
|
|
+
|
|
|
+ for ( int i = 0; i < maxfeatures; i++ )
|
|
|
+ {
|
|
|
+ int k = rand() % featsize;
|
|
|
+
|
|
|
+ int vsize = (int)ex[k].second.vec->size();
|
|
|
+ for(int j = 0; j < vsize; j++)
|
|
|
+ {
|
|
|
+ features(i,j) = (*( ex[k].second.vec))[j];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ pca.calculateBasis ( features, dim, 1 );
|
|
|
+
|
|
|
+ if ( save_cache )
|
|
|
+ pca.save ( filename );
|
|
|
+
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ cout << "readpca: " << filename << endl;
|
|
|
+ pca.read ( filename );
|
|
|
+ cout << "end" << endl;
|
|
|
+ }
|
|
|
+#ifdef DEBUG
|
|
|
+ cerr << "finished computing pca" << endl;
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegCsurka::doPCA ( Examples &ex )
|
|
|
+{
|
|
|
+ cout << "converting features using pca starts" << endl;
|
|
|
+
|
|
|
+ std::string savedir = cname = conf->gS ( "cache", "root", "/dev/null/" );
|
|
|
+ std::string shortf = ex.filename;
|
|
|
+ if ( string::npos != ex.filename.rfind ( "/" ) )
|
|
|
+ shortf = ex.filename.substr ( ex.filename.rfind ( "/" ) );
|
|
|
+ std::string filename = savedir+"/pcasave/"+shortf;
|
|
|
+ std::string syscall = "mkdir "+savedir+"/pcasave";
|
|
|
+ system ( syscall.c_str() );
|
|
|
+ cout << "filename: " << filename << endl;
|
|
|
+
|
|
|
+ if ( !FileMgt::fileExists(filename) || calcpca )
|
|
|
+ {
|
|
|
+ ofstream ofStream;
|
|
|
+
|
|
|
+ //Opens the file binary
|
|
|
+ ofStream.open ( filename.c_str(),fstream::out | fstream::binary );
|
|
|
+
|
|
|
+ for ( int k = 0; k < ( int ) ex.size(); k++ )
|
|
|
+ {
|
|
|
+ NICE::Vector tmp = pca.getFeatureVector ( * ( ex[k].second.vec ), true );
|
|
|
+ delete ex[k].second.vec;
|
|
|
+ for ( int d = 0; d < (int)tmp.size(); d++ )
|
|
|
+ ofStream.write ( ( char* ) &tmp[d], sizeof ( double ) );
|
|
|
+ ex[k].second.vec = new NICE::Vector ( tmp );
|
|
|
+ }
|
|
|
+ ofStream.close();
|
|
|
+ cout << endl;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ ifstream ifStream;
|
|
|
+ ifStream.open ( filename.c_str(),std::fstream::in | std::fstream::binary );
|
|
|
+ for ( int k = 0; k < ( int ) ex.size(); k++ )
|
|
|
+ {
|
|
|
+ NICE::Vector tmp = NICE::Vector ( dim );
|
|
|
+ delete ex[k].second.vec;
|
|
|
+ for ( int d = 0; d < dim; d++ )
|
|
|
+ ifStream.read ( ( char* ) &tmp[d], sizeof ( double ) );
|
|
|
+ ex[k].second.vec = new NICE::Vector ( tmp );
|
|
|
+ }
|
|
|
+
|
|
|
+ ifStream.close();
|
|
|
+ }
|
|
|
+ cout << "converting features using pca finished" << endl;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+void SemSegCsurka::train ( const MultiDataset *md )
|
|
|
+{
|
|
|
+
|
|
|
+ /*die einzelnen Trainingsschritte
|
|
|
+ 1. auf allen Trainingsbilder SIFT Merkmale an den Gitterpunkten bei allen Auflösungen bestimmen
|
|
|
+ 2. PCA anwenden
|
|
|
+ 3. aus diesen ein GMM erstellen
|
|
|
+ 4. für jedes SIFT-Merkmal einen Vektor erstellen, der an der Stelle i die Wahrscheinlichkeit enthällt zur Verteilung i des GMM, Zur Zeit mit BoV-Alternative durch Moosman06 erledigt
|
|
|
+ 5. diese Vektoren in einem diskriminitativen Klassifikator ( z.B. SLR oder Randomized Forests) zusammen mit ihrer Klassenzugehörigkeit anlernen
|
|
|
+ */
|
|
|
+#ifdef DEBUG
|
|
|
+ cerr << "SemSegCsurka:: training starts" << endl;
|
|
|
+#endif
|
|
|
+
|
|
|
+ Examples examples;
|
|
|
+ examples.filename = "training";
|
|
|
+
|
|
|
+
|
|
|
+ // Welche Opponentsift Implementierung soll genutzt werden ?
|
|
|
+ LocalFeatureRepresentation *cSIFT = NULL;
|
|
|
+ LocalFeatureRepresentation *writeFeats = NULL;
|
|
|
+ LocalFeatureRepresentation *readFeats = NULL;
|
|
|
+ LocalFeatureRepresentation *getFeats = NULL;
|
|
|
+
|
|
|
+ if( opSiftImpl == "NICE" )
|
|
|
+ {
|
|
|
+ cSIFT = new LFonHSG( conf, "HSGtrain" );
|
|
|
+ }
|
|
|
+ else if( opSiftImpl == "VANDESANDE" )
|
|
|
+ {
|
|
|
+ // the used features
|
|
|
+ cSIFT = new LFColorSande ( conf, "LFColorSandeTrain" );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ fthrow(Exception, "feattype: %s not yet supported" << opSiftImpl );
|
|
|
+ }
|
|
|
+
|
|
|
+ getFeats = cSIFT;
|
|
|
+
|
|
|
+ if(writefeat)
|
|
|
+ {
|
|
|
+ // write the features to a file, if there isn't any to read
|
|
|
+ writeFeats = new LFWriteCache ( conf, cSIFT );
|
|
|
+ getFeats = writeFeats;
|
|
|
+ }
|
|
|
+
|
|
|
+ if(readfeat)
|
|
|
+ {
|
|
|
+ // read the features from a file
|
|
|
+ if(writefeat)
|
|
|
+ {
|
|
|
+ readFeats = new LFReadCache ( conf, writeFeats,-1 );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ readFeats = new LFReadCache ( conf, cSIFT,-1 );
|
|
|
+ }
|
|
|
+ getFeats = readFeats;
|
|
|
+ }
|
|
|
+
|
|
|
+ // additional Colorfeatures
|
|
|
+ LFColorWeijer lcw(conf);
|
|
|
+
|
|
|
+ int lfdimension = -1;
|
|
|
+
|
|
|
+ const LabeledSet train = * ( *md ) ["train"];
|
|
|
+ const LabeledSet *trainp = &train;
|
|
|
+
|
|
|
+ ////////////////////////
|
|
|
+ // Merkmale berechnen //
|
|
|
+ ////////////////////////
|
|
|
+
|
|
|
+ set<int> forbidden_classes;
|
|
|
+
|
|
|
+ std::string forbidden_classes_s = conf->gS ( "analysis", "donttrain", "" );
|
|
|
+ if ( forbidden_classes_s == "" )
|
|
|
+ {
|
|
|
+ forbidden_classes_s = conf->gS ( "analysis", "forbidden_classes", "" );
|
|
|
+ }
|
|
|
+ cn.getSelection ( forbidden_classes_s, forbidden_classes );
|
|
|
+ cerr << "forbidden: " << forbidden_classes_s << endl;
|
|
|
+
|
|
|
+ ProgressBar pb ( "Local Feature Extraction" );
|
|
|
+ pb.show();
|
|
|
+
|
|
|
+ int imgnb = 0;
|
|
|
+
|
|
|
+ LOOP_ALL_S ( *trainp )
|
|
|
+ {
|
|
|
+ //EACH_S(classno, currentFile);
|
|
|
+ EACH_INFO ( classno,info );
|
|
|
+
|
|
|
+ pb.update ( trainp->count() );
|
|
|
+
|
|
|
+ NICE::ColorImage img;
|
|
|
+
|
|
|
+ std::string currentFile = info.img();
|
|
|
+
|
|
|
+ CachedExample *ce = new CachedExample ( currentFile );
|
|
|
+
|
|
|
+ const LocalizationResult *locResult = info.localization();
|
|
|
+ if ( locResult->size() <= 0 )
|
|
|
+ {
|
|
|
+ fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
|
|
|
+ currentFile.c_str() );
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n",
|
|
|
+ currentFile.c_str() );
|
|
|
+
|
|
|
+ int xsize, ysize;
|
|
|
+ ce->getImageSize ( xsize, ysize );
|
|
|
+
|
|
|
+ NICE::Image pixelLabels (xsize, ysize);
|
|
|
+ pixelLabels.set(0);
|
|
|
+ locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
|
|
|
+
|
|
|
+ try {
|
|
|
+ img = ColorImage(currentFile);
|
|
|
+ } catch (Exception) {
|
|
|
+ cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ Globals::setCurrentImgFN ( currentFile );
|
|
|
+
|
|
|
+ VVector features;
|
|
|
+ VVector cfeatures;
|
|
|
+ VVector positions;
|
|
|
+
|
|
|
+ NICE::ColorImage cimg(currentFile);
|
|
|
+
|
|
|
+ getFeats->extractFeatures ( img, features, positions );
|
|
|
+
|
|
|
+#ifdef DEBUG_CSURK
|
|
|
+ cout << "[log] SemSegCsruka::train -> " << currentFile << " an " << positions.size() << " Positionen wurden Features (Anz = " << features.size() << ") " << endl; cout << "mit einer Dimension von " << features[ 0].size() << " extrahiert." << endl;
|
|
|
+#endif
|
|
|
+
|
|
|
+ if(usecolorfeats)
|
|
|
+ lcw.getDescriptors(cimg, cfeatures, positions);
|
|
|
+
|
|
|
+ int j = 0;
|
|
|
+
|
|
|
+ for ( VVector::const_iterator i = features.begin();
|
|
|
+ i != features.end();
|
|
|
+ i++,j++ )
|
|
|
+ {
|
|
|
+ const NICE::Vector & x = *i;
|
|
|
+ classno = pixelLabels.getPixel(( int )positions[j][0], ( int )positions[j][1] );
|
|
|
+
|
|
|
+ if ( forbidden_classes.find ( classno ) != forbidden_classes.end() )
|
|
|
+ continue;
|
|
|
+
|
|
|
+ if ( lfdimension < 0 )
|
|
|
+ lfdimension = ( int ) x.size();
|
|
|
+ else
|
|
|
+ assert ( lfdimension == ( int ) x.size() );
|
|
|
+
|
|
|
+ NICE::Vector *v = new NICE::Vector ( x );
|
|
|
+
|
|
|
+ if(usecolorfeats && !usepca)
|
|
|
+ v->append(cfeatures[j]);
|
|
|
+
|
|
|
+ Example example ( v );
|
|
|
+ example.position = imgnb;
|
|
|
+ examples.push_back (
|
|
|
+ pair<int, Example> ( classno, example ) );
|
|
|
+ }
|
|
|
+ features.clear();
|
|
|
+ positions.clear();
|
|
|
+ delete ce;
|
|
|
+ imgnb++;
|
|
|
+ }
|
|
|
+
|
|
|
+ pb.hide();
|
|
|
+
|
|
|
+ //////////////////
|
|
|
+ // PCA anwenden //
|
|
|
+ //////////////////
|
|
|
+
|
|
|
+ if ( usepca )
|
|
|
+ {
|
|
|
+ if ( !read_cache )
|
|
|
+ {
|
|
|
+ initializePCA ( examples );
|
|
|
+ }
|
|
|
+ doPCA ( examples );
|
|
|
+ lfdimension = dim;
|
|
|
+ }
|
|
|
+
|
|
|
+ /////////////////////////////////////////////////////
|
|
|
+ // Low-Level Features in High-Level transformieren //
|
|
|
+ /////////////////////////////////////////////////////
|
|
|
+
|
|
|
+ int hlfdimension = lfdimension;
|
|
|
+
|
|
|
+ if(norm)
|
|
|
+ normalize(examples);
|
|
|
+
|
|
|
+ if ( usegmm )
|
|
|
+ {
|
|
|
+ if(!usepca && !norm)
|
|
|
+ normalize(examples);
|
|
|
+ g = new GMM ( conf,gaussians );
|
|
|
+
|
|
|
+ if ( dogmm || !g->loadData ( cache+"/gmm" ) )
|
|
|
+ {
|
|
|
+ g->computeMixture ( examples );
|
|
|
+ if ( save_cache )
|
|
|
+ g->saveData ( cache+"/gmm" );
|
|
|
+ }
|
|
|
+
|
|
|
+ hlfdimension = gaussians;
|
|
|
+
|
|
|
+ if ( usefisher )
|
|
|
+ hlfdimension = gaussians*2*dim;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( usekmeans )
|
|
|
+ {
|
|
|
+ if(!usepca || norm)
|
|
|
+ normalize(examples);
|
|
|
+ k = new KMeansOnline ( gaussians );
|
|
|
+
|
|
|
+ k->cluster ( examples );
|
|
|
+
|
|
|
+ hlfdimension = gaussians;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( usekmeans || usegmm )
|
|
|
+ {
|
|
|
+ examples.clear();
|
|
|
+ pb.reset("Local Feature Extraction");
|
|
|
+ lfdimension = -1;
|
|
|
+ pb.update ( trainp->count() );
|
|
|
+ LOOP_ALL_S ( *trainp )
|
|
|
+ {
|
|
|
+ EACH_INFO ( classno,info );
|
|
|
+
|
|
|
+ pb.update ( trainp->count() );
|
|
|
+
|
|
|
+ NICE::ColorImage img;
|
|
|
+
|
|
|
+ std::string currentFile = info.img();
|
|
|
+
|
|
|
+ CachedExample *ce = new CachedExample ( currentFile );
|
|
|
+
|
|
|
+ const LocalizationResult *locResult = info.localization();
|
|
|
+ if ( locResult->size() <= 0 )
|
|
|
+ {
|
|
|
+ fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
|
|
|
+ currentFile.c_str() );
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n",
|
|
|
+ currentFile.c_str() );
|
|
|
+
|
|
|
+ int xsize, ysize;
|
|
|
+ ce->getImageSize ( xsize, ysize );
|
|
|
+
|
|
|
+ NICE::Image pixelLabels (xsize, ysize);
|
|
|
+ pixelLabels.set(0);
|
|
|
+ locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
|
|
|
+
|
|
|
+ try{
|
|
|
+ img = ColorImage(currentFile);
|
|
|
+ }
|
|
|
+ catch (Exception){
|
|
|
+ cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ Globals::setCurrentImgFN ( currentFile );
|
|
|
+
|
|
|
+ VVector features;
|
|
|
+ VVector cfeatures;
|
|
|
+ VVector positions;
|
|
|
+
|
|
|
+ NICE::ColorImage cimg(currentFile);
|
|
|
+
|
|
|
+ getFeats->extractFeatures ( img, features, positions );
|
|
|
+
|
|
|
+ if(usecolorfeats)
|
|
|
+ lcw.getDescriptors(cimg, cfeatures, positions);
|
|
|
+
|
|
|
+ int j = 0;
|
|
|
+
|
|
|
+ Examples tmpex;
|
|
|
+
|
|
|
+ for ( VVector::const_iterator i = features.begin();
|
|
|
+ i != features.end();
|
|
|
+ i++,j++ )
|
|
|
+ {
|
|
|
+
|
|
|
+ const NICE::Vector & x = *i;
|
|
|
+
|
|
|
+ classno = pixelLabels.getPixel(( int )positions[j][0], ( int )positions[j][1] );
|
|
|
+
|
|
|
+ if ( forbidden_classes.find ( classno ) != forbidden_classes.end() )
|
|
|
+ continue;
|
|
|
+
|
|
|
+ if ( lfdimension < 0 )
|
|
|
+ lfdimension = ( int ) x.size();
|
|
|
+ else
|
|
|
+ assert ( lfdimension == ( int ) x.size() );
|
|
|
+
|
|
|
+ NICE::Vector *v = new NICE::Vector ( x );
|
|
|
+ if(usecolorfeats)
|
|
|
+ v->append(cfeatures[j]);
|
|
|
+
|
|
|
+ Example example ( v );
|
|
|
+ example.position = imgnb;
|
|
|
+ example.x = ( int ) positions[j][0];
|
|
|
+ example.y = ( int )positions[j][1];
|
|
|
+ example.scale = positions[j][2];
|
|
|
+
|
|
|
+ tmpex.push_back ( pair<int, Example> ( classno, example ) );
|
|
|
+ }
|
|
|
+ tmpex.filename = currentFile;
|
|
|
+ if ( usepca )
|
|
|
+ {
|
|
|
+ doPCA ( tmpex );
|
|
|
+ }
|
|
|
+
|
|
|
+ convertLowToHigh ( tmpex, anteil );
|
|
|
+
|
|
|
+ smoothHL ( tmpex );
|
|
|
+
|
|
|
+ for ( int i = 0; i < (int)tmpex.size(); i++ )
|
|
|
+ {
|
|
|
+ examples.push_back ( pair<int, Example> ( tmpex[i].first, tmpex[i].second ) );
|
|
|
+ }
|
|
|
+
|
|
|
+ tmpex.clear();
|
|
|
+
|
|
|
+ features.clear();
|
|
|
+ positions.clear();
|
|
|
+ delete ce;
|
|
|
+ imgnb++;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ pb.hide();
|
|
|
+ }
|
|
|
+ ////////////////////////////
|
|
|
+ // Klassifikator anlernen //
|
|
|
+ ////////////////////////////
|
|
|
+ FeaturePool fp;
|
|
|
+
|
|
|
+ Feature *f;
|
|
|
+
|
|
|
+ if ( usegmm || usekmeans )
|
|
|
+ f = new SparseVectorFeature ( hlfdimension );
|
|
|
+ else
|
|
|
+ f = new VectorFeature ( hlfdimension );
|
|
|
+
|
|
|
+ f->explode ( fp );
|
|
|
+ delete f;
|
|
|
+
|
|
|
+ if(usecolorfeats && !( usekmeans || usegmm ))
|
|
|
+ {
|
|
|
+ int dimension = hlfdimension+11;
|
|
|
+ for ( int i = hlfdimension ; i < dimension ; i++ )
|
|
|
+ {
|
|
|
+ VectorFeature *f = new VectorFeature ( dimension );
|
|
|
+ f->feature_index = i;
|
|
|
+ fp.addFeature(f, 1.0 / dimension);
|
|
|
+ }
|
|
|
+ }
|
|
|
+/*
|
|
|
+cout << "train classifier" << endl;
|
|
|
+fp.store(cout);
|
|
|
+getchar();
|
|
|
+for(int z = 0; z < examples.size(); z++)
|
|
|
+{
|
|
|
+cout << "examples.size() " << examples.size() << endl;
|
|
|
+cout << "class: " << examples[z].first << endl;
|
|
|
+ cout << *examples[z].second.vec << endl;
|
|
|
+ getchar();
|
|
|
+}*/
|
|
|
+ if(classifier != NULL)
|
|
|
+ classifier->train ( fp, examples );
|
|
|
+ else
|
|
|
+ {
|
|
|
+ LabeledSetVector lvec;
|
|
|
+ convertExamplesToLSet(examples, lvec);
|
|
|
+ vclassifier->teach(lvec);
|
|
|
+ if(usegmm)
|
|
|
+ convertLSetToSparseExamples(examples, lvec);
|
|
|
+ else
|
|
|
+ convertLSetToExamples(examples, lvec);
|
|
|
+ vclassifier->finishTeaching();
|
|
|
+ }
|
|
|
+
|
|
|
+ fp.destroy();
|
|
|
+
|
|
|
+ if ( save_cache )
|
|
|
+ {
|
|
|
+ if(classifier != NULL)
|
|
|
+ classifier->save ( cache+"/fpcrf.data" );
|
|
|
+ else
|
|
|
+ vclassifier->save ( cache+"/veccl.data" );
|
|
|
+ }
|
|
|
+
|
|
|
+ ////////////
|
|
|
+ //clean up//
|
|
|
+ ////////////
|
|
|
+ for ( int i = 0; i < ( int ) examples.size(); i++ )
|
|
|
+ {
|
|
|
+ examples[i].second.clean();
|
|
|
+ }
|
|
|
+ examples.clear();
|
|
|
+
|
|
|
+ if(cSIFT != NULL)
|
|
|
+ delete cSIFT;
|
|
|
+ if(writeFeats != NULL)
|
|
|
+ delete writeFeats;
|
|
|
+ if(readFeats != NULL)
|
|
|
+ delete readFeats;
|
|
|
+ getFeats = NULL;
|
|
|
+
|
|
|
+ trainpostprocess ( md );
|
|
|
+
|
|
|
+ cerr << "SemSeg training finished" << endl;
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegCsurka::trainpostprocess ( const MultiDataset *md )
|
|
|
+{
|
|
|
+ cout<< "start postprocess" << endl;
|
|
|
+ ////////////////////////////
|
|
|
+ // Postprocess trainieren //
|
|
|
+ ////////////////////////////
|
|
|
+ const LabeledSet train = * ( *md ) ["train"];
|
|
|
+ const LabeledSet *trainp = &train;
|
|
|
+
|
|
|
+ if ( userellocprior || srg != NULL || gcopt !=NULL )
|
|
|
+ {
|
|
|
+ clog << "[log] SemSegCsurka::trainpostprocess: if ( userellocprior || srg != NULL || gcopt !=NULL )" << endl;
|
|
|
+ if ( userellocprior )
|
|
|
+ relloc->setClassNo ( cn.numClasses() );
|
|
|
+
|
|
|
+ if ( gcopt !=NULL )
|
|
|
+ {
|
|
|
+ gcopt->setClassNo ( cn.numClasses() );
|
|
|
+ }
|
|
|
+
|
|
|
+ ProgressBar pb ( "learn relative location prior maps" );
|
|
|
+ pb.show();
|
|
|
+ LOOP_ALL_S ( *trainp ) // für alle Bilder den ersten Klassifikationsschritt durchführen um den zweiten Klassifikator anzutrainieren
|
|
|
+ {
|
|
|
+ EACH_INFO ( classno,info );
|
|
|
+
|
|
|
+ pb.update ( trainp->count() );
|
|
|
+
|
|
|
+ NICE::ColorImage img;
|
|
|
+
|
|
|
+ std::string currentFile = info.img();
|
|
|
+ Globals::setCurrentImgFN ( currentFile );
|
|
|
+ CachedExample *ce = new CachedExample ( currentFile );
|
|
|
+
|
|
|
+ const LocalizationResult *locResult = info.localization();
|
|
|
+ if ( locResult->size() <= 0 )
|
|
|
+ {
|
|
|
+ fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
|
|
|
+ currentFile.c_str() );
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n",
|
|
|
+ currentFile.c_str() );
|
|
|
+
|
|
|
+ int xsize, ysize;
|
|
|
+ ce->getImageSize ( xsize, ysize );
|
|
|
+
|
|
|
+ NICE::Image pixelLabels (xsize, ysize);
|
|
|
+ pixelLabels.set(0);
|
|
|
+ locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
|
|
|
+
|
|
|
+ try{
|
|
|
+ img = ColorImage(currentFile);
|
|
|
+ }
|
|
|
+ catch(Exception)
|
|
|
+ {
|
|
|
+ cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ //Regionen ermitteln
|
|
|
+ NICE::Matrix mask;
|
|
|
+
|
|
|
+ int regionsize = seg->segRegions ( img, mask );
|
|
|
+#ifdef DEBUG_CSURK
|
|
|
+ Image overlay(img.width(), img.height());
|
|
|
+
|
|
|
+ double maxval = 0.0;
|
|
|
+
|
|
|
+ for(int y = 0; y < img.height(); y++)
|
|
|
+ {
|
|
|
+ for(int x = 0; x < img.width(); x++)
|
|
|
+ {
|
|
|
+ int val = ((int)mask(x,y)+1)%256;
|
|
|
+ overlay.setPixel(x,y,val);
|
|
|
+ maxval = std::max(mask(x,y), maxval);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ cout << maxval << " different regions found" << endl;
|
|
|
+
|
|
|
+ NICE::showImageOverlay ( img, overlay, "Segmentation Result" );
|
|
|
+#endif
|
|
|
+
|
|
|
+ Examples regions;
|
|
|
+
|
|
|
+ vector<vector<int> > hists;
|
|
|
+
|
|
|
+ for ( int i = 0; i < regionsize; i++ )
|
|
|
+ {
|
|
|
+ Example tmp;
|
|
|
+ regions.push_back ( pair<int, Example> ( 0, tmp ) );
|
|
|
+ vector<int> hist ( cn.numClasses(), 0 );
|
|
|
+ hists.push_back ( hist );
|
|
|
+ }
|
|
|
+
|
|
|
+ for ( int x = 0; x < xsize; x++ )
|
|
|
+ {
|
|
|
+ for ( int y = 0; y < ysize; y++ )
|
|
|
+ {
|
|
|
+ int numb = mask(x,y);
|
|
|
+ regions[numb].second.x += x;
|
|
|
+ regions[numb].second.y += y;
|
|
|
+ regions[numb].second.weight += 1.0;
|
|
|
+ hists[numb][pixelLabels.getPixel(x,y)]++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for ( int i = 0; i < regionsize; i++ )
|
|
|
+ {
|
|
|
+ regions[i].second.x /= ( int ) regions[i].second.weight;
|
|
|
+ regions[i].second.y /= ( int ) regions[i].second.weight;
|
|
|
+
|
|
|
+ int maxval = -numeric_limits<int>::max();
|
|
|
+ int maxpos = -1;
|
|
|
+ int secondpos = -1;
|
|
|
+ for ( int k = 0; k < ( int ) hists[i].size(); k++ )
|
|
|
+ {
|
|
|
+ if ( maxval <hists[i][k] )
|
|
|
+ {
|
|
|
+ maxval = hists[i][k];
|
|
|
+ secondpos = maxpos;
|
|
|
+ maxpos = k;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( cn.text ( maxpos ) == "various" )
|
|
|
+ regions[i].first = secondpos;
|
|
|
+ else
|
|
|
+ regions[i].first = maxpos;
|
|
|
+
|
|
|
+ }
|
|
|
+ if ( userellocprior )
|
|
|
+ relloc->trainPriorsMaps ( regions, xsize, ysize );
|
|
|
+
|
|
|
+ if ( srg != NULL )
|
|
|
+ srg->trainShape ( regions, mask );
|
|
|
+
|
|
|
+ if ( gcopt !=NULL )
|
|
|
+ gcopt->trainImage ( regions, mask );
|
|
|
+
|
|
|
+ delete ce;
|
|
|
+
|
|
|
+ }
|
|
|
+ pb.hide();
|
|
|
+ if ( userellocprior )
|
|
|
+ relloc->finishPriorsMaps ( cn );
|
|
|
+
|
|
|
+ if ( srg != NULL )
|
|
|
+ srg->finishShape ( cn );
|
|
|
+
|
|
|
+ if ( gcopt != NULL )
|
|
|
+ gcopt->finishPP ( cn );
|
|
|
+ }
|
|
|
+ if ( userellocprior )
|
|
|
+ {
|
|
|
+ clog << "[log] SemSegCsurka::trainpostprocess: if ( userellocprior )" << endl;
|
|
|
+ ProgressBar pb ( "learn relative location classifier" );
|
|
|
+ pb.show();
|
|
|
+
|
|
|
+ int nummer = 0;
|
|
|
+ LOOP_ALL_S ( *trainp ) // für alle Bilder den ersten Klassifikationsschritt durchführen um den zweiten Klassifikator anzutrainieren
|
|
|
+ {
|
|
|
+ //EACH_S(classno, currentFile);
|
|
|
+ EACH_INFO ( classno,info );
|
|
|
+ nummer++;
|
|
|
+ pb.update ( trainp->count() );
|
|
|
+
|
|
|
+ NICE::Image img;
|
|
|
+ std::string currentFile = info.img();
|
|
|
+
|
|
|
+ CachedExample *ce = new CachedExample ( currentFile );
|
|
|
+
|
|
|
+ const LocalizationResult *locResult = info.localization();
|
|
|
+ if ( locResult->size() <= 0 )
|
|
|
+ {
|
|
|
+ fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
|
|
|
+ currentFile.c_str() );
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n",
|
|
|
+ currentFile.c_str() );
|
|
|
+
|
|
|
+ int xsize, ysize;
|
|
|
+ ce->getImageSize ( xsize, ysize );
|
|
|
+
|
|
|
+ NICE::Image pixelLabels (xsize, ysize);
|
|
|
+ pixelLabels.set(0);
|
|
|
+ locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
|
|
|
+
|
|
|
+ try{
|
|
|
+ img = Preprocess::ReadImgAdv ( currentFile.c_str() );
|
|
|
+ }
|
|
|
+ catch(Exception)
|
|
|
+ {
|
|
|
+ cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ Globals::setCurrentImgFN ( currentFile );
|
|
|
+
|
|
|
+ NICE::Image segresult;
|
|
|
+
|
|
|
+ GenericImage<double> probabilities ( xsize,ysize,classno,true );
|
|
|
+
|
|
|
+ Examples regions;
|
|
|
+
|
|
|
+ NICE::Matrix mask;
|
|
|
+
|
|
|
+ if ( savesteps )
|
|
|
+ {
|
|
|
+ std::ostringstream s1;
|
|
|
+ s1 << cache << "/rlpsave/" << nummer;
|
|
|
+
|
|
|
+ std::string filename = s1.str();
|
|
|
+ s1 << ".probs";
|
|
|
+
|
|
|
+ std::string fn2 = s1.str();
|
|
|
+
|
|
|
+ FILE *file;
|
|
|
+ file = fopen ( filename.c_str(),"r" );
|
|
|
+
|
|
|
+ if ( file==NULL )
|
|
|
+ {
|
|
|
+ //berechnen
|
|
|
+ classifyregions ( ce, segresult, probabilities, regions, mask );
|
|
|
+ //schreiben
|
|
|
+ ofstream fout ( filename.c_str(), ios::app );
|
|
|
+ fout << regions.size() << endl;
|
|
|
+ for ( int i = 0; i < ( int ) regions.size(); i++ )
|
|
|
+ {
|
|
|
+ regions[i].second.store ( fout );
|
|
|
+ fout << regions[i].first << endl;
|
|
|
+ }
|
|
|
+ fout.close();
|
|
|
+ probabilities.store ( fn2 );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ //lesen
|
|
|
+ ifstream fin ( filename.c_str() );
|
|
|
+ int size;
|
|
|
+ fin >> size;
|
|
|
+
|
|
|
+ for ( int i = 0; i < size; i++ )
|
|
|
+ {
|
|
|
+ Example ex;
|
|
|
+ ex.restore ( fin );
|
|
|
+ int tmp;
|
|
|
+ fin >> tmp;
|
|
|
+ regions.push_back ( pair<int, Example> ( tmp, ex ) );
|
|
|
+ }
|
|
|
+
|
|
|
+ fin.close();
|
|
|
+
|
|
|
+ probabilities.restore ( fn2 );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ classifyregions ( ce, segresult, probabilities, regions, mask );
|
|
|
+ }
|
|
|
+
|
|
|
+ relloc->trainClassifier ( regions, probabilities );
|
|
|
+
|
|
|
+ delete ce;
|
|
|
+
|
|
|
+ }
|
|
|
+ relloc->finishClassifier();
|
|
|
+ pb.hide();
|
|
|
+
|
|
|
+ relloc->save ( cache+"/rlp" );
|
|
|
+ }
|
|
|
+ cout << "finished postprocess" << endl;
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegCsurka::classifyregions ( CachedExample *ce, NICE::Image & segresult, GenericImage<double> & probabilities, Examples &Regionen, NICE::Matrix & mask )
|
|
|
+{
|
|
|
+ /* die einzelnen Testschritte:
|
|
|
+ 1.x auf dem Testbild alle SIFT Merkmale an den Gitterpunkten bei allen Auflösungen bestimmen
|
|
|
+ 2.x für jedes SIFT-Merkmal einen Vektor erstellen, der an der Stelle i die Wahrscheinlichkeit enthällt zur Verteilung i des GMM
|
|
|
+ 3.x diese Vektoren klassifizieren, so dass für jede Klasse die Wahrscheinlichkeit gespeichert wird
|
|
|
+ 4.x für jeden Pixel die Wahrscheinlichkeiten mitteln aus allen Patches, in denen der Pixel vorkommt
|
|
|
+ 5.x das Originalbild in homogene Bereiche segmentieren
|
|
|
+ 6.x die homogenen Bereiche bekommen die gemittelten Wahrscheinlichkeiten ihrer Pixel
|
|
|
+ 7. (einzelne Klassen mit einem globalen Klassifikator ausschließen)
|
|
|
+ 8.x jeder Pixel bekommt die Klasse seiner Region zugeordnet
|
|
|
+ */
|
|
|
+
|
|
|
+ clog << "[log] SemSegCsruka::classifyregions" << endl;
|
|
|
+ int xsize, ysize;
|
|
|
+
|
|
|
+ ce->getImageSize ( xsize, ysize );
|
|
|
+
|
|
|
+ probabilities.reInit ( xsize, ysize, classNames->getMaxClassno() +1, true/*allocMem*/ );
|
|
|
+ clog << "[log] SemSegCsruka::classifyregions: probabilities.numChannels = " << probabilities.numChannels << endl;
|
|
|
+
|
|
|
+ segresult.resize(xsize, ysize);
|
|
|
+
|
|
|
+ Examples pce;
|
|
|
+
|
|
|
+ // Welche Opponentsift Implementierung soll genutzt werden ?
|
|
|
+ LocalFeatureRepresentation *cSIFT = NULL;
|
|
|
+ LocalFeatureRepresentation *writeFeats = NULL;
|
|
|
+ LocalFeatureRepresentation *readFeats = NULL;
|
|
|
+ LocalFeatureRepresentation *getFeats = NULL;
|
|
|
+
|
|
|
+
|
|
|
+ if( opSiftImpl == "NICE" )
|
|
|
+ {
|
|
|
+ cSIFT = new LFonHSG( conf, "HSGtrain" );
|
|
|
+ }
|
|
|
+ else if( opSiftImpl == "VANDESANDE" )
|
|
|
+ {
|
|
|
+ // the used features
|
|
|
+ cSIFT = new LFColorSande ( conf, "LFColorSandeTrain" );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ fthrow(Exception, "feattype: %s not yet supported" << opSiftImpl );
|
|
|
+ }
|
|
|
+
|
|
|
+ getFeats = cSIFT;
|
|
|
+
|
|
|
+ if(writefeat)
|
|
|
+ {
|
|
|
+ // write the features to a file, if there isn't any to read
|
|
|
+ writeFeats = new LFWriteCache ( conf, cSIFT );
|
|
|
+ getFeats = writeFeats;
|
|
|
+ }
|
|
|
+
|
|
|
+ if(readfeat)
|
|
|
+ {
|
|
|
+ // read the features from a file
|
|
|
+ if(writefeat)
|
|
|
+ {
|
|
|
+ readFeats = new LFReadCache ( conf, writeFeats,-1 );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ readFeats = new LFReadCache ( conf, cSIFT,-1 );
|
|
|
+ }
|
|
|
+ getFeats = readFeats;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // additional Colorfeatures
|
|
|
+ LFColorWeijer lcw(conf);
|
|
|
+
|
|
|
+ NICE::ColorImage img;
|
|
|
+
|
|
|
+ std::string currentFile = Globals::getCurrentImgFN();
|
|
|
+
|
|
|
+ try
|
|
|
+ {
|
|
|
+ img = ColorImage(currentFile);
|
|
|
+ }
|
|
|
+ catch(Exception)
|
|
|
+ {
|
|
|
+ cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
|
|
|
+ }
|
|
|
+
|
|
|
+ VVector features;
|
|
|
+ VVector cfeatures;
|
|
|
+ VVector positions;
|
|
|
+
|
|
|
+ getFeats->extractFeatures ( img, features, positions );
|
|
|
+
|
|
|
+ if(usecolorfeats)
|
|
|
+ lcw.getDescriptors(img, cfeatures, positions);
|
|
|
+
|
|
|
+ set<double> scales;
|
|
|
+
|
|
|
+ int j = 0;
|
|
|
+ int lfdimension = -1;
|
|
|
+ for ( VVector::const_iterator i = features.begin();
|
|
|
+ i != features.end();
|
|
|
+ i++,j++ )
|
|
|
+ {
|
|
|
+ const NICE::Vector & x = *i;
|
|
|
+
|
|
|
+ if ( lfdimension < 0 ) lfdimension = ( int ) x.size();
|
|
|
+ else assert ( lfdimension == ( int ) x.size() );
|
|
|
+
|
|
|
+ NICE::Vector *v = new NICE::Vector ( x );
|
|
|
+
|
|
|
+ if(usecolorfeats)
|
|
|
+ v->append(cfeatures[j]);
|
|
|
+
|
|
|
+ Example tmp = Example ( v );
|
|
|
+ tmp.x = ( int )positions[j][0];
|
|
|
+ tmp.y = ( int ) positions[j][1];
|
|
|
+ tmp.width = ( int ) ( 16.0*positions[j][2] );
|
|
|
+ tmp.height = tmp.width;
|
|
|
+ tmp.scale = positions[j][2];
|
|
|
+ scales.insert ( positions[j][2] );
|
|
|
+ pce.push_back ( pair<int, Example> ( 0, tmp ) );
|
|
|
+ }
|
|
|
+
|
|
|
+ //////////////////
|
|
|
+ // PCA anwenden //
|
|
|
+ //////////////////
|
|
|
+ pce.filename = currentFile;
|
|
|
+ if ( usepca )
|
|
|
+ {
|
|
|
+ doPCA ( pce );
|
|
|
+ lfdimension = dim;
|
|
|
+ }
|
|
|
+
|
|
|
+ //////////////////
|
|
|
+ // BoV anwenden //
|
|
|
+ //////////////////
|
|
|
+ if(norm)
|
|
|
+ normalize(pce);
|
|
|
+ if ( usegmm || usekmeans )
|
|
|
+ {
|
|
|
+ if(!usepca && !norm)
|
|
|
+ normalize(pce);
|
|
|
+ convertLowToHigh ( pce );
|
|
|
+ smoothHL ( pce );
|
|
|
+ lfdimension = gaussians;
|
|
|
+ }
|
|
|
+
|
|
|
+ /////////////////////////////////////////
|
|
|
+ // Wahrscheinlichkeitskarten erstellen //
|
|
|
+ /////////////////////////////////////////
|
|
|
+ int klassen = probabilities.numChannels;
|
|
|
+ GenericImage<double> preMap ( xsize,ysize,klassen*scales.size(),true );
|
|
|
+
|
|
|
+ long int offset = 0;
|
|
|
+
|
|
|
+ // initialisieren
|
|
|
+ for ( int y = 0 ; y < ysize ; y++ )
|
|
|
+ for ( int x = 0 ; x < xsize ; x++,offset++ )
|
|
|
+ {
|
|
|
+ // alles zum Hintergrund machen
|
|
|
+ segresult.setPixel(x,y,0);
|
|
|
+ // Die Wahrscheinlichkeitsmaps auf 0 initialisieren
|
|
|
+ for ( int i = 0 ; i < ( int ) probabilities.numChannels; i++ )
|
|
|
+ {
|
|
|
+ probabilities.data[i][offset] = 0.0;
|
|
|
+ }
|
|
|
+ for ( int j = 0; j < ( int ) preMap.numChannels; j++ )
|
|
|
+ {
|
|
|
+ preMap.data[j][offset]=0.0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Die Wahrscheinlichkeitsmaps mit den einzelnen Wahrscheinlichkeiten je Skalierung füllen
|
|
|
+ int scalesize = scales.size();
|
|
|
+
|
|
|
+ // Globale Häufigkeiten akkumulieren
|
|
|
+ FullVector fV ( ( int ) probabilities.numChannels );
|
|
|
+
|
|
|
+ for ( int i = 0; i < fV.size(); i++ )
|
|
|
+ fV[i] = 0.0;
|
|
|
+
|
|
|
+ // read allowed classes
|
|
|
+
|
|
|
+ string cndir = conf->gS("SemSegCsurka", "cndir", "");
|
|
|
+ int classes = (int)probabilities.numChannels;
|
|
|
+ vector<int> useclass(classes,1);
|
|
|
+
|
|
|
+ std::vector< std::string > list;
|
|
|
+ StringTools::split (currentFile, '/', list);
|
|
|
+
|
|
|
+ string orgname = list.back();
|
|
|
+ if(cndir != "")
|
|
|
+ {
|
|
|
+ useclass = vector<int>(classes,0);
|
|
|
+ ifstream infile((cndir+"/"+orgname+".dat").c_str());
|
|
|
+ while(!infile.eof() && infile.good())
|
|
|
+ {
|
|
|
+ int tmp;
|
|
|
+ infile >> tmp;
|
|
|
+ if(tmp >= 0 && tmp < classes)
|
|
|
+ {
|
|
|
+ useclass[tmp] = 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if(classifier != NULL)
|
|
|
+ {
|
|
|
+ clog << "[log] SemSegCsruka::classifyregions: Wahrscheinlichkeitskarten erstellen: classifier != NULL" << endl;
|
|
|
+#pragma omp parallel for
|
|
|
+ for ( int s = 0; s < scalesize; s++ )
|
|
|
+ {
|
|
|
+#pragma omp parallel for
|
|
|
+ for ( int i = s; i < ( int ) pce.size(); i+=scalesize )
|
|
|
+ {
|
|
|
+ ClassificationResult r = classifier->classify ( pce[i].second );
|
|
|
+ for ( int j = 0 ; j < r.scores.size(); j++ )
|
|
|
+ {
|
|
|
+ if(useclass[j] == 0)
|
|
|
+ continue;
|
|
|
+ fV[j] += r.scores[j];
|
|
|
+ preMap.set ( pce[i].second.x,pce[i].second.y,r.scores[j],j+s*klassen );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+//#pragma omp parallel for
|
|
|
+ for ( int s = 0; s < scalesize; s++ )
|
|
|
+ {
|
|
|
+//#pragma omp parallel for
|
|
|
+ for ( int i = s; i < ( int ) pce.size(); i+=scalesize )
|
|
|
+ {
|
|
|
+ ClassificationResult r = vclassifier->classify ( *(pce[i].second.vec) );
|
|
|
+ for ( int j = 0 ; j < ( int ) r.scores.size(); j++ )
|
|
|
+ {
|
|
|
+ if(useclass[j] == 0)
|
|
|
+ continue;
|
|
|
+ fV[j] += r.scores[j];
|
|
|
+ preMap.set ( pce[i].second.x,pce[i].second.y,r.scores[j],j+s*klassen );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ vector<double> scalesVec;
|
|
|
+ for ( set<double>::const_iterator iter = scales.begin();
|
|
|
+ iter != scales.end();
|
|
|
+ ++iter )
|
|
|
+ {
|
|
|
+ scalesVec.push_back ( *iter );
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // Gaußfiltern
|
|
|
+ clog << "[log] SemSegCsruka::classifyregions: Wahrscheinlichkeitskarten erstellen -> Gaussfiltern" << endl;
|
|
|
+ for ( int s = 0; s < scalesize; s++ )
|
|
|
+ {
|
|
|
+ double sigma = sigmaweight*16.0*scalesVec[s];
|
|
|
+ cerr << "sigma: " << sigma << endl;
|
|
|
+#pragma omp parallel for
|
|
|
+ for ( int i = 0; i < klassen; i++ )
|
|
|
+ {
|
|
|
+ int pos = i+s*klassen;
|
|
|
+
|
|
|
+ double maxval = preMap.data[pos][0];
|
|
|
+ double minval = preMap.data[pos][0];
|
|
|
+
|
|
|
+ for ( int z = 1; z < xsize*ysize; z++ )
|
|
|
+ {
|
|
|
+ maxval = std::max ( maxval, preMap.data[pos][z] );
|
|
|
+ minval = std::min ( minval, preMap.data[pos][z] );
|
|
|
+ }
|
|
|
+
|
|
|
+ NICE::FloatImage dblImg( xsize, ysize);
|
|
|
+ NICE::FloatImage gaussImg( xsize, ysize);
|
|
|
+
|
|
|
+ long int offset2 = 0;
|
|
|
+ for ( int y = 0; y < ysize; y++ )
|
|
|
+ {
|
|
|
+ for ( int x = 0; x < xsize; x++, offset2++ )
|
|
|
+ {
|
|
|
+ dblImg.setPixel(x,y,preMap.data[pos][offset2]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ filterGaussSigmaApproximate<float,float,float>( dblImg, sigma, &gaussImg );
|
|
|
+
|
|
|
+ offset2 = 0;
|
|
|
+ for ( int y = 0; y < ysize; y++ )
|
|
|
+ {
|
|
|
+ for ( int x = 0; x < xsize; x++, offset2++ )
|
|
|
+ {
|
|
|
+ preMap.data[pos][offset2]=gaussImg.getPixel(x,y);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // Zusammenfassen und auswerten
|
|
|
+ clog << "[log] SemSegCsruka::classifyregions: Wahrscheinlichkeitskarten erstellen -> zusammenfassen und auswerten" << endl;
|
|
|
+#pragma omp parallel for
|
|
|
+ for ( int x = 0; x < xsize; x++ )
|
|
|
+ {
|
|
|
+ for ( int y = 0; y < ysize; y++ )
|
|
|
+ {
|
|
|
+ for ( int j = 0 ; j < ( int ) probabilities.numChannels; j++ )
|
|
|
+ {
|
|
|
+ double prob = 0.0;
|
|
|
+ for ( int s = 0; s < ( int ) scalesize; s++ )
|
|
|
+ {
|
|
|
+
|
|
|
+ prob+=preMap.get ( x,y,j+s*klassen );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ double val = prob / ( double ) ( scalesize );
|
|
|
+ probabilities.set ( x,y,val, j );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#undef VISSEMSEG
|
|
|
+#ifdef VISSEMSEG
|
|
|
+
|
|
|
+ std::string s;
|
|
|
+ std::stringstream out;
|
|
|
+ std::vector< std::string > list;
|
|
|
+ StringTools::split (Globals::getCurrentImgFN (), '/', list);
|
|
|
+
|
|
|
+ out << "probmaps/" << list.back() << ".probs";
|
|
|
+
|
|
|
+ s = out.str();
|
|
|
+
|
|
|
+ probabilities.store(s);s
|
|
|
+
|
|
|
+ for ( int j = 0 ; j < ( int ) probabilities.numChannels; j++ )
|
|
|
+ {
|
|
|
+ cout << "klasse: " << j << endl;//" " << cn.text ( j ) << endl;
|
|
|
+
|
|
|
+ NICE::Matrix tmp ( probabilities.ysize, probabilities.xsize );
|
|
|
+ double maxval = 0.0;
|
|
|
+ for ( int y = 0; y < probabilities.ysize; y++ )
|
|
|
+ for ( int x = 0; x < probabilities.xsize; x++ )
|
|
|
+ {
|
|
|
+ double val = probabilities.get ( x,y,j );
|
|
|
+ tmp(y, x) = val;
|
|
|
+ maxval = std::max ( val, maxval );
|
|
|
+ }
|
|
|
+ NICE::ColorImage imgrgb (probabilities.xsize, probabilities.ysize);
|
|
|
+ ICETools::convertToRGB ( tmp, imgrgb );
|
|
|
+
|
|
|
+ cout << "maxval = " << maxval << " for class " << j << endl; //cn.text ( j ) << endl;
|
|
|
+
|
|
|
+ //Show ( ON, imgrgb, cn.text ( j ) );
|
|
|
+ //showImage(imgrgb, "Ergebnis");
|
|
|
+
|
|
|
+ std::string s;
|
|
|
+ std::stringstream out;
|
|
|
+ out << "tmp" << j << ".ppm";
|
|
|
+ s = out.str();
|
|
|
+ imgrgb.writePPM( s );
|
|
|
+
|
|
|
+ //getchar();
|
|
|
+ }
|
|
|
+#endif
|
|
|
+ if ( useregions )
|
|
|
+ {
|
|
|
+ if ( bestclasses > 0 )
|
|
|
+ {
|
|
|
+ PSSImageLevelPrior pss ( 0, bestclasses, 0.2 );
|
|
|
+ pss.setPrior ( fV );
|
|
|
+ pss.postprocess ( segresult, probabilities );
|
|
|
+ }
|
|
|
+
|
|
|
+ //Regionen ermitteln
|
|
|
+
|
|
|
+ int regionsize = seg->segRegions ( img, mask);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ Regionen.clear();
|
|
|
+ vector<vector <double> > regionprob;
|
|
|
+
|
|
|
+ // Wahrscheinlichkeiten für jede Region initialisieren
|
|
|
+ for ( int i = 0; i < regionsize; i++ )
|
|
|
+ {
|
|
|
+ vector<double> tmp;
|
|
|
+ for ( int j = 0; j < ( int ) probabilities.numChannels; j++ )
|
|
|
+ {
|
|
|
+ tmp.push_back ( 0.0 );
|
|
|
+ }
|
|
|
+ regionprob.push_back ( tmp );
|
|
|
+ Regionen.push_back ( pair<int, Example> ( 0, Example() ) );
|
|
|
+ }
|
|
|
+
|
|
|
+ // Wahrscheinlichkeiten für Regionen bestimmen
|
|
|
+ for ( int x = 0; x < xsize; x++ )
|
|
|
+ {
|
|
|
+ for ( int y = 0; y < ysize; y++ )
|
|
|
+ {
|
|
|
+ for ( int j = 0 ; j < ( int ) probabilities.numChannels; j++ )
|
|
|
+ {
|
|
|
+ double val = probabilities.get ( x,y,j );
|
|
|
+ int pos = mask(x,y);
|
|
|
+ Regionen[pos].second.weight+=1.0;
|
|
|
+ Regionen[pos].second.x += x;
|
|
|
+ Regionen[pos].second.y += y;
|
|
|
+ regionprob[pos][j] += val;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+cout << "regions: " << regionsize << endl;
|
|
|
+cout << "outfeats: " << endl;
|
|
|
+for(int j = 0; j < regionprob.size(); j++)
|
|
|
+{
|
|
|
+ for(int i = 0; i < regionprob[j].size(); i++)
|
|
|
+ {
|
|
|
+ cout << regionprob[j][i] << " ";
|
|
|
+ }
|
|
|
+ cout << endl;
|
|
|
+}
|
|
|
+cout << endl;
|
|
|
+getchar();*/
|
|
|
+
|
|
|
+ // beste Wahrscheinlichkeit je Region wählen
|
|
|
+ for ( int i = 0; i < regionsize; i++ )
|
|
|
+ {
|
|
|
+ if(Regionen[i].second.weight > 0)
|
|
|
+ {
|
|
|
+ Regionen[i].second.x /= ( int ) Regionen[i].second.weight;
|
|
|
+ Regionen[i].second.y /= ( int ) Regionen[i].second.weight;
|
|
|
+ }
|
|
|
+ double maxval = 0.0;
|
|
|
+ int maxpos = 0;
|
|
|
+
|
|
|
+ for ( int j = 0 ; j < ( int ) regionprob[i].size(); j++ )
|
|
|
+ {
|
|
|
+ regionprob[i][j] /= Regionen[i].second.weight;
|
|
|
+
|
|
|
+ if ( maxval < regionprob[i][j] )
|
|
|
+ {
|
|
|
+ maxval = regionprob[i][j];
|
|
|
+ maxpos = j;
|
|
|
+ }
|
|
|
+ probabilities.set (Regionen[i].second.x,Regionen[i].second.y,regionprob[i][j], j );
|
|
|
+ }
|
|
|
+
|
|
|
+ Regionen[i].first = maxpos;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Pixel jeder Region labeln
|
|
|
+ for ( int y = 0; y < (int)mask.cols(); y++ )
|
|
|
+ {
|
|
|
+ for ( int x = 0; x < (int)mask.rows(); x++ )
|
|
|
+ {
|
|
|
+ int pos = mask(x,y);
|
|
|
+ segresult.setPixel(x,y,Regionen[pos].first);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ #define WRITEREGIONS
|
|
|
+#ifdef WRITEREGIONS
|
|
|
+ RegionGraph rg;
|
|
|
+ seg->getGraphRepresentation(img, mask, rg);
|
|
|
+ for(uint pos = 0; pos < regionprob.size(); pos++)
|
|
|
+ {
|
|
|
+ rg[pos]->setProbs(regionprob[pos]);
|
|
|
+ }
|
|
|
+
|
|
|
+ std::string s;
|
|
|
+ std::stringstream out;
|
|
|
+ std::vector< std::string > list;
|
|
|
+ StringTools::split (Globals::getCurrentImgFN (), '/', list);
|
|
|
+
|
|
|
+ out << "rgout/" << list.back() << ".graph";
|
|
|
+ string writefile = out.str();
|
|
|
+ rg.write(writefile);
|
|
|
+#endif
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+
|
|
|
+ PSSImageLevelPrior pss ( 1, 4, 0.2 );
|
|
|
+ pss.setPrior ( fV );
|
|
|
+ pss.postprocess ( segresult, probabilities );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // Saubermachen:
|
|
|
+ clog << "[log] SemSegCsurka::classifyregions: sauber machen" << endl;
|
|
|
+ for ( int i = 0; i < ( int ) pce.size(); i++ )
|
|
|
+ {
|
|
|
+ pce[i].second.clean();
|
|
|
+ }
|
|
|
+ pce.clear();
|
|
|
+
|
|
|
+ if(cSIFT != NULL)
|
|
|
+ delete cSIFT;
|
|
|
+ if(writeFeats != NULL)
|
|
|
+ delete writeFeats;
|
|
|
+ if(readFeats != NULL)
|
|
|
+ delete readFeats;
|
|
|
+ getFeats = NULL;
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegCsurka::semanticseg ( CachedExample *ce,
|
|
|
+ NICE::Image & segresult,
|
|
|
+ GenericImage<double> & probabilities )
|
|
|
+{
|
|
|
+
|
|
|
+ Examples regions;
|
|
|
+ NICE::Matrix regionmask;
|
|
|
+ classifyregions ( ce, segresult, probabilities, regions, regionmask );
|
|
|
+ if ( userellocprior || srg != NULL || gcopt !=NULL )
|
|
|
+ {
|
|
|
+ if ( userellocprior )
|
|
|
+ relloc->postprocess ( regions, probabilities );
|
|
|
+
|
|
|
+ if ( srg != NULL )
|
|
|
+ srg->optimizeShape ( regions, regionmask, probabilities );
|
|
|
+
|
|
|
+ if ( gcopt != NULL )
|
|
|
+ gcopt->optimizeImage ( regions, regionmask, probabilities );
|
|
|
+
|
|
|
+ // Pixel jeder Region labeln
|
|
|
+ for ( int y = 0; y < (int)regionmask.cols(); y++ )
|
|
|
+ {
|
|
|
+ for ( int x = 0; x < (int)regionmask.rows(); x++ )
|
|
|
+ {
|
|
|
+ int pos = regionmask(x,y);
|
|
|
+ segresult.setPixel(x,y,regions[pos].first);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#ifndef NOVISUAL
|
|
|
+#undef VISSEMSEG
|
|
|
+#ifdef VISSEMSEG
|
|
|
+// showImage(img);
|
|
|
+ for ( int j = 0 ; j < ( int ) probabilities.numChannels; j++ )
|
|
|
+ {
|
|
|
+ cout << "klasse: " << j << " " << cn.text ( j ) << endl;
|
|
|
+
|
|
|
+ NICE::Matrix tmp ( probabilities.ysize, probabilities.xsize );
|
|
|
+ double maxval = 0.0;
|
|
|
+ for ( int y = 0; y < probabilities.ysize; y++ )
|
|
|
+ for ( int x = 0; x < probabilities.xsize; x++ )
|
|
|
+ {
|
|
|
+ double val = probabilities.get ( x,y,j );
|
|
|
+ tmp(y, x) = val;
|
|
|
+ maxval = std::max ( val, maxval );
|
|
|
+ }
|
|
|
+
|
|
|
+ NICE::ColorImage imgrgb (probabilities.xsize, probabilities.ysize);
|
|
|
+ ICETools::convertToRGB ( tmp, imgrgb );
|
|
|
+
|
|
|
+ cout << "maxval = " << maxval << " for class " << cn.text ( j ) << endl;
|
|
|
+
|
|
|
+ Show ( ON, imgrgb, cn.text ( j ) );
|
|
|
+ imgrgb.Write ( "tmp.ppm" );
|
|
|
+
|
|
|
+ getchar();
|
|
|
+ }
|
|
|
+#endif
|
|
|
+#endif
|
|
|
+
|
|
|
+}
|