|
@@ -98,7 +98,7 @@ in which the COVID-19 disease was the most active and severe.
|
|
|
and~\Cref{eq:modSIR}. The Germany data is taken from the death case
|
|
|
data set. Exemplatory we show illustrations of the datasets of Schleswig
|
|
|
Holstein, Berlin, and Thuringia. For the other states see~\Cref{chap:appendix} }
|
|
|
- \label{fig:datasets}
|
|
|
+ \label{fig:datasets_sir}
|
|
|
\end{figure}
|
|
|
|
|
|
The PINN that we employ consists of seven hidden layers with twenty neurons
|
|
@@ -117,6 +117,52 @@ setups that we describe in this section.
|
|
|
|
|
|
\subsection{Results 4}
|
|
|
\label{sec:sir:results}
|
|
|
+
|
|
|
+\begin{figure}[t]
|
|
|
+ \centering
|
|
|
+ \includegraphics[width=0.7\textwidth]{reproducability.pdf}
|
|
|
+ \caption{Visualization of all 5 predictions for the synthetic dataset,
|
|
|
+ compared to the true values of $\alpha = \nicefrac{1}{3}$ and $\beta = \nicefrac{1}{2}$}
|
|
|
+ \label{fig:reprod}
|
|
|
+\end{figure}
|
|
|
+
|
|
|
+In this section we describe the results, that we obtain from the conducted
|
|
|
+experiments, that we describe in the preceding section. First we show the
|
|
|
+results for the synthetic dataset and look at the accuracy and reproducibility.
|
|
|
+Then we present and discuss the results for the German states and Germany.\\
|
|
|
+
|
|
|
+The results of the experiment regarding the synthetic data can be seen
|
|
|
+in~\Cref{table:alpha_beta_synth} and in~\Cref{fig:reprod}.~\Cref{fig:reprod}
|
|
|
+shows the values of $\beta$ and $\alpha$ of each iteration compared to the true
|
|
|
+values of $\beta=\nicefrac{1}{2}$ and $\alpha=\nicefrac{1}{3}$. In~\Cref{table:alpha_beta_synth}
|
|
|
+we present the mean $\mu$ and standard variation $\sigma$ of both values across
|
|
|
+all 5 iterations.\\
|
|
|
+
|
|
|
+\begin{table}[h]
|
|
|
+ \begin{center}
|
|
|
+ \begin{tabular}{ccc|ccc}
|
|
|
+ true $\alpha$ & $\mu(\alpha)$ & $\sigma(\alpha)$ & true $\beta$ & $\mu(\beta)$ & $\sigma(\beta)$ \\
|
|
|
+ \hline
|
|
|
+ 0.3333 & 0.3334 & 0.0011 & 0.5000 & 0.5000 & 0.0017 \\
|
|
|
+ \end{tabular}
|
|
|
+ \caption{The mean $\mu$ and standard variation $\sigma$ across the 5
|
|
|
+ independent iterations of training our PINNs with the synthetic dataset.}
|
|
|
+ \label{table:alpha_beta_synth}
|
|
|
+ \end{center}
|
|
|
+\end{table}
|
|
|
+From the results we can see that the model is able to approximate the correct
|
|
|
+parameters for the small, synthetic dataset in each of the 5 iterations. Even
|
|
|
+though the predicted value is never exactly correct, the standard deviation is
|
|
|
+negligible small and taking the mean of multiple iterations yields an almost
|
|
|
+perfect result.\\
|
|
|
+
|
|
|
+In~\Cref{table:alpha_beta} we present the results of the training for the
|
|
|
+real-world data. These are presented from top to bottom, in the order of the
|
|
|
+community identification number, with the last entry being Germany. $\mu$ and
|
|
|
+$\sigma$ are both calculated across all 5 iterations of our experiment. We can
|
|
|
+see that the values of \emph{Hamburg} have the highest standard deviation, while
|
|
|
+\emph{Mecklenburg Vorpommern} has the smallest $\sigma$.\\
|
|
|
+
|
|
|
\begin{table}[h]
|
|
|
\begin{center}
|
|
|
\begin{tabular}{c|cc|cc}
|
|
@@ -145,6 +191,28 @@ setups that we describe in this section.
|
|
|
\label{table:alpha_beta}
|
|
|
\end{center}
|
|
|
\end{table}
|
|
|
+
|
|
|
+In~\Cref{fig:alpha_beta_mean_std} we visualize the means and standard variations
|
|
|
+in contrast to the national values. The states with the highest transmission rate
|
|
|
+values are Thuringia, Saxony Anhalt and Mecklenburg West-Pomerania. It is also,
|
|
|
+visible that all six of the eastern states have a higher transmission rate than
|
|
|
+Germany. These results may be explainable with the ratio of vaccinated individuals\footnote{\url{https://impfdashboard.de/}}.
|
|
|
+The eastern state have a comparably low complete vaccination ratio, accept for
|
|
|
+Berlin. While Berlin has a moderate vaccination ratio, it is also a hub of
|
|
|
+mobility, which means that contact between individuals happens much more often. This is also a reason for Hamburg being a state with an above national standard rate of transmission.
|
|
|
+\\
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+We visualize these numbers in~\Cref{fig:alpha_beta_mean_std},
|
|
|
+where all means and standard variations are plotted as points, while the values
|
|
|
+for Germany are also plotted as lines to make a classification easier. It is
|
|
|
+visible that Hamburg, Baden-Württemberg, Bayern and all six of the states that
|
|
|
+lie in the eastern part of Germany have a higher transmission rate $\beta$ than
|
|
|
+overall Germany. Furthermore, it can be observed, that all values for the
|
|
|
+recovery $\alpha$ seem to be correlating to the value of $\beta$, which can be
|
|
|
+explained with the assumption that we make when we preprocess the data using the
|
|
|
+recovery queue by setting the recovery time to 14 days.
|
|
|
\begin{figure}[h]
|
|
|
\centering
|
|
|
\includegraphics[width=\textwidth]{mean_std_alpha_beta_res.pdf}
|
|
@@ -192,50 +260,87 @@ we restrict the data points to an interval of 1200 days starting from March 09.
|
|
|
\begin{figure}[h]
|
|
|
%\centering
|
|
|
\setlength{\unitlength}{1cm} % Set the unit length for coordinates
|
|
|
- \begin{picture}(12, 9.5) % Specify the size of the picture environment (width, height)
|
|
|
- \put(1.5, 4.5){
|
|
|
+ \begin{picture}(12, 14.5) % Specify the size of the picture environment (width, height)
|
|
|
+ \put(0, 10){
|
|
|
\begin{subfigure}{0.3\textwidth}
|
|
|
\centering
|
|
|
- \includegraphics[width=\textwidth]{SIR_synth.pdf}
|
|
|
+ \includegraphics[width=\textwidth]{I_synth.pdf}
|
|
|
+ \caption{Synthetic data}
|
|
|
\label{fig:synthetic_I}
|
|
|
\end{subfigure}
|
|
|
}
|
|
|
- \put(8, 4.5){
|
|
|
+ \put(4.75, 10){
|
|
|
\begin{subfigure}{0.3\textwidth}
|
|
|
\centering
|
|
|
- \includegraphics[width=\textwidth]{datasets_states/Germany_SIR_14.pdf}
|
|
|
- \label{fig:germany_I}
|
|
|
+ \includegraphics[width=\textwidth]{datasets_states/Germany_I_14.pdf}
|
|
|
+ \caption{Germany with $\alpha=\nicefrac{1}{14}$}
|
|
|
+ \label{fig:germany_I_14}
|
|
|
+ \end{subfigure}
|
|
|
+ }
|
|
|
+ \put(9.5, 10){
|
|
|
+ \begin{subfigure}{0.3\textwidth}
|
|
|
+ \centering
|
|
|
+ \includegraphics[width=\textwidth]{datasets_states/Germany_I_5.pdf}
|
|
|
+ \caption{Germany with $\alpha=\nicefrac{1}{5}$}
|
|
|
+ \label{fig:germany_I_5}
|
|
|
+ \end{subfigure}
|
|
|
+ }
|
|
|
+ \put(0, 5){
|
|
|
+ \begin{subfigure}{0.3\textwidth}
|
|
|
+ \centering
|
|
|
+ \includegraphics[width=\textwidth]{datasets_states/Nordrhein_Westfalen_I_14.pdf}
|
|
|
+ \caption{NRW with $\alpha=\nicefrac{1}{14}$}
|
|
|
+ \label{fig:schleswig_holstein_I_14}
|
|
|
+ \end{subfigure}
|
|
|
+ }
|
|
|
+ \put(4.75, 5){
|
|
|
+ \begin{subfigure}{0.3\textwidth}
|
|
|
+ \centering
|
|
|
+ \includegraphics[width=\textwidth]{datasets_states/Hessen_I_14.pdf}
|
|
|
+ \caption{Hessen with $\alpha=\nicefrac{1}{14}$}
|
|
|
+ \label{fig:berlin_I_14}
|
|
|
+ \end{subfigure}
|
|
|
+ }
|
|
|
+ \put(9.5, 5){
|
|
|
+ \begin{subfigure}{0.3\textwidth}
|
|
|
+ \centering
|
|
|
+ \includegraphics[width=\textwidth]{datasets_states/Thueringen_I_14.pdf}
|
|
|
+ \caption{Thüringen with $\alpha=\nicefrac{1}{14}$}
|
|
|
+ \label{fig:thüringen_I_14}
|
|
|
\end{subfigure}
|
|
|
}
|
|
|
\put(0, 0){
|
|
|
\begin{subfigure}{0.3\textwidth}
|
|
|
\centering
|
|
|
- \includegraphics[width=\textwidth]{datasets_states/Schleswig_Holstein_SIR_14.pdf}
|
|
|
- \label{fig:schleswig_holstein_I}
|
|
|
+ \includegraphics[width=\textwidth]{datasets_states/Nordrhein_Westfalen_I_5.pdf}
|
|
|
+ \caption{NRW with $\alpha=\nicefrac{1}{5}$}
|
|
|
+ \label{fig:schleswig_holstein_I_5}
|
|
|
\end{subfigure}
|
|
|
}
|
|
|
\put(4.75, 0){
|
|
|
\begin{subfigure}{0.3\textwidth}
|
|
|
\centering
|
|
|
- \includegraphics[width=\textwidth]{datasets_states/Berlin_SIR_14.pdf}
|
|
|
- \label{fig:berlin_I}
|
|
|
+ \includegraphics[width=\textwidth]{datasets_states/Hessen_I_5.pdf}
|
|
|
+ \caption{Hessen with $\alpha=\nicefrac{1}{5}$}
|
|
|
+ \label{fig:berlin_I_5}
|
|
|
\end{subfigure}
|
|
|
}
|
|
|
\put(9.5, 0){
|
|
|
\begin{subfigure}{0.3\textwidth}
|
|
|
\centering
|
|
|
- \includegraphics[width=\textwidth]{datasets_states/Thueringen_SIR_14.pdf}
|
|
|
- \label{fig:thüringen_I}
|
|
|
+ \includegraphics[width=\textwidth]{datasets_states/Thueringen_I_5.pdf}
|
|
|
+ \caption{Thüringen with $\alpha=\nicefrac{1}{5}$}
|
|
|
+ \label{fig:thüringen_I_5}
|
|
|
\end{subfigure}
|
|
|
}
|
|
|
|
|
|
\end{picture}
|
|
|
- \caption{Synthetic and real-world training data. The synthetic data is
|
|
|
- generated with $\alpha=\nicefrac{1}{3}$ and $\beta=\nicefrac{1}{2}$
|
|
|
- and~\Cref{eq:modSIR}. The Germany data is taken from the death case
|
|
|
- data set. Exemplatory we show illustrations of the datasets of Schleswig
|
|
|
- Holstein, Berlin, and Thuringia. For the other states see~\Cref{chap:appendix} }
|
|
|
- \label{fig:datasets}
|
|
|
+ \caption{Visualization of the datasets for the training process.
|
|
|
+ Illustration (a) is the synthetic data. For the real-world data we use a
|
|
|
+ dataset with $\alpha=\nicefrac{1}{14}$ and $\alpha=\nicefrac{1}{5}$ each.
|
|
|
+ (b) and (c) for Germany, (d) and (g) for Nordrhein-Westfalen (NRW), (e) and (h)
|
|
|
+ for Hessen, and (f) and (i) for Thüringen.}
|
|
|
+ \label{fig:i_datasets}
|
|
|
\end{figure}
|
|
|
|
|
|
For this task the chosen architecture of the neural network consists of 4 hidden
|