|
@@ -0,0 +1,955 @@
|
|
|
+// This file is part of libigl, a simple c++ geometry processing library.
|
|
|
+//
|
|
|
+// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
|
|
|
+//
|
|
|
+// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
|
+// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
|
+// obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
+#include "AABB.h"
|
|
|
+#include "EPS.h"
|
|
|
+#include "barycenter.h"
|
|
|
+#include "barycentric_coordinates.h"
|
|
|
+#include "colon.h"
|
|
|
+#include "colon.h"
|
|
|
+#include "doublearea.h"
|
|
|
+#include "matlab_format.h"
|
|
|
+#include "point_simplex_squared_distance.h"
|
|
|
+#include "project_to_line_segment.h"
|
|
|
+#include "sort.h"
|
|
|
+#include "volume.h"
|
|
|
+#include "ray_box_intersect.h"
|
|
|
+#include "ray_mesh_intersect.h"
|
|
|
+#include <iostream>
|
|
|
+#include <iomanip>
|
|
|
+#include <limits>
|
|
|
+#include <list>
|
|
|
+#include <queue>
|
|
|
+#include <stack>
|
|
|
+
|
|
|
+template <typename DerivedV, int DIM>
|
|
|
+ template <typename Derivedbb_mins, typename Derivedbb_maxs>
|
|
|
+inline void igl::AABB<DerivedV,DIM>::init(
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const Eigen::MatrixXi & Ele,
|
|
|
+ const Eigen::PlainObjectBase<Derivedbb_mins> & bb_mins,
|
|
|
+ const Eigen::PlainObjectBase<Derivedbb_maxs> & bb_maxs,
|
|
|
+ const Eigen::VectorXi & elements,
|
|
|
+ const int i)
|
|
|
+{
|
|
|
+ using namespace std;
|
|
|
+ using namespace Eigen;
|
|
|
+ deinit();
|
|
|
+ if(bb_mins.size() > 0)
|
|
|
+ {
|
|
|
+ assert(bb_mins.rows() == bb_maxs.rows() && "Serial tree arrays must match");
|
|
|
+ assert(bb_mins.cols() == V.cols() && "Serial tree array dim must match V");
|
|
|
+ assert(bb_mins.cols() == bb_maxs.cols() && "Serial tree arrays must match");
|
|
|
+ assert(bb_mins.rows() == elements.rows() &&
|
|
|
+ "Serial tree arrays must match");
|
|
|
+ // construct from serialization
|
|
|
+ m_box.extend(bb_mins.row(i).transpose());
|
|
|
+ m_box.extend(bb_maxs.row(i).transpose());
|
|
|
+ m_primitive = elements(i);
|
|
|
+ // Not leaf then recurse
|
|
|
+ if(m_primitive == -1)
|
|
|
+ {
|
|
|
+ m_left = new AABB();
|
|
|
+ m_left->init( V,Ele,bb_mins,bb_maxs,elements,2*i+1);
|
|
|
+ m_right = new AABB();
|
|
|
+ m_right->init( V,Ele,bb_mins,bb_maxs,elements,2*i+2);
|
|
|
+ //m_depth = std::max( m_left->m_depth, m_right->m_depth)+1;
|
|
|
+ }
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ VectorXi allI = colon<int>(0,Ele.rows()-1);
|
|
|
+ MatrixXDIMS BC;
|
|
|
+ if(Ele.cols() == 1)
|
|
|
+ {
|
|
|
+ // points
|
|
|
+ BC = V;
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ // Simplices
|
|
|
+ barycenter(V,Ele,BC);
|
|
|
+ }
|
|
|
+ MatrixXi SI(BC.rows(),BC.cols());
|
|
|
+ {
|
|
|
+ MatrixXDIMS _;
|
|
|
+ MatrixXi IS;
|
|
|
+ igl::sort(BC,1,true,_,IS);
|
|
|
+ // Need SI(i) to tell which place i would be sorted into
|
|
|
+ const int dim = IS.cols();
|
|
|
+ for(int i = 0;i<IS.rows();i++)
|
|
|
+ {
|
|
|
+ for(int d = 0;d<dim;d++)
|
|
|
+ {
|
|
|
+ SI(IS(i,d),d) = i;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ init(V,Ele,SI,allI);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+ template <typename DerivedV, int DIM>
|
|
|
+inline void igl::AABB<DerivedV,DIM>::init(
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const Eigen::MatrixXi & Ele)
|
|
|
+{
|
|
|
+ using namespace Eigen;
|
|
|
+ // deinit will be immediately called...
|
|
|
+ return init(V,Ele,MatrixXDIMS(),MatrixXDIMS(),VectorXi(),0);
|
|
|
+}
|
|
|
+
|
|
|
+ template <typename DerivedV, int DIM>
|
|
|
+inline void igl::AABB<DerivedV,DIM>::init(
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const Eigen::MatrixXi & Ele,
|
|
|
+ const Eigen::MatrixXi & SI,
|
|
|
+ const Eigen::VectorXi & I)
|
|
|
+{
|
|
|
+ using namespace Eigen;
|
|
|
+ using namespace std;
|
|
|
+ deinit();
|
|
|
+ if(V.size() == 0 || Ele.size() == 0 || I.size() == 0)
|
|
|
+ {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ assert(DIM == V.cols() && "V.cols() should matched declared dimension");
|
|
|
+ //const Scalar inf = numeric_limits<Scalar>::infinity();
|
|
|
+ m_box = AlignedBox<Scalar,DIM>();
|
|
|
+ // Compute bounding box
|
|
|
+ for(int i = 0;i<I.rows();i++)
|
|
|
+ {
|
|
|
+ for(int c = 0;c<Ele.cols();c++)
|
|
|
+ {
|
|
|
+ m_box.extend(V.row(Ele(I(i),c)).transpose());
|
|
|
+ m_box.extend(V.row(Ele(I(i),c)).transpose());
|
|
|
+ }
|
|
|
+ }
|
|
|
+ switch(I.size())
|
|
|
+ {
|
|
|
+ case 0:
|
|
|
+ {
|
|
|
+ assert(false);
|
|
|
+ }
|
|
|
+ case 1:
|
|
|
+ {
|
|
|
+ m_primitive = I(0);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ default:
|
|
|
+ {
|
|
|
+ // Compute longest direction
|
|
|
+ int max_d = -1;
|
|
|
+ m_box.diagonal().maxCoeff(&max_d);
|
|
|
+ // Can't use median on BC directly because many may have same value,
|
|
|
+ // but can use median on sorted BC indices
|
|
|
+ VectorXi SIdI(I.rows());
|
|
|
+ for(int i = 0;i<I.rows();i++)
|
|
|
+ {
|
|
|
+ SIdI(i) = SI(I(i),max_d);
|
|
|
+ }
|
|
|
+ // Since later I use <= I think I don't need to worry about odd/even
|
|
|
+ // Pass by copy to avoid changing input
|
|
|
+ const auto median = [](VectorXi A)->Scalar
|
|
|
+ {
|
|
|
+ size_t n = A.size()/2;
|
|
|
+ nth_element(A.data(),A.data()+n,A.data()+A.size());
|
|
|
+ if(A.rows() % 2 == 1)
|
|
|
+ {
|
|
|
+ return A(n);
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ nth_element(A.data(),A.data()+n-1,A.data()+A.size());
|
|
|
+ return 0.5*(A(n)+A(n-1));
|
|
|
+ }
|
|
|
+ };
|
|
|
+ const Scalar med = median(SIdI);
|
|
|
+ VectorXi LI((I.rows()+1)/2),RI(I.rows()/2);
|
|
|
+ assert(LI.rows()+RI.rows() == I.rows());
|
|
|
+ // Distribute left and right
|
|
|
+ {
|
|
|
+ int li = 0;
|
|
|
+ int ri = 0;
|
|
|
+ for(int i = 0;i<I.rows();i++)
|
|
|
+ {
|
|
|
+ if(SIdI(i)<=med)
|
|
|
+ {
|
|
|
+ LI(li++) = I(i);
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ RI(ri++) = I(i);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ //m_depth = 0;
|
|
|
+ if(LI.rows()>0)
|
|
|
+ {
|
|
|
+ m_left = new AABB();
|
|
|
+ m_left->init(V,Ele,SI,LI);
|
|
|
+ //m_depth = std::max(m_depth, m_left->m_depth+1);
|
|
|
+ }
|
|
|
+ if(RI.rows()>0)
|
|
|
+ {
|
|
|
+ m_right = new AABB();
|
|
|
+ m_right->init(V,Ele,SI,RI);
|
|
|
+ //m_depth = std::max(m_depth, m_right->m_depth+1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+template <typename DerivedV, int DIM>
|
|
|
+inline bool igl::AABB<DerivedV,DIM>::is_leaf() const
|
|
|
+{
|
|
|
+ return m_primitive != -1;
|
|
|
+}
|
|
|
+
|
|
|
+template <typename DerivedV, int DIM>
|
|
|
+template <typename Derivedq>
|
|
|
+inline std::vector<int> igl::AABB<DerivedV,DIM>::find(
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const Eigen::MatrixXi & Ele,
|
|
|
+ const Eigen::PlainObjectBase<Derivedq> & q,
|
|
|
+ const bool first) const
|
|
|
+{
|
|
|
+ using namespace std;
|
|
|
+ using namespace Eigen;
|
|
|
+ assert(q.size() == DIM &&
|
|
|
+ "Query dimension should match aabb dimension");
|
|
|
+ assert(Ele.cols() == V.cols()+1 &&
|
|
|
+ "AABB::find only makes sense for (d+1)-simplices");
|
|
|
+ const Scalar epsilon = igl::EPS<Scalar>();
|
|
|
+ // Check if outside bounding box
|
|
|
+ bool inside = m_box.contains(q.transpose());
|
|
|
+ if(!inside)
|
|
|
+ {
|
|
|
+ return std::vector<int>();
|
|
|
+ }
|
|
|
+ assert(m_primitive==-1 || (m_left == NULL && m_right == NULL));
|
|
|
+ if(is_leaf())
|
|
|
+ {
|
|
|
+ // Initialize to some value > -epsilon
|
|
|
+ Scalar a1=0,a2=0,a3=0,a4=0;
|
|
|
+ switch(DIM)
|
|
|
+ {
|
|
|
+ case 3:
|
|
|
+ {
|
|
|
+ // Barycentric coordinates
|
|
|
+ typedef Eigen::Matrix<Scalar,1,3> RowVector3S;
|
|
|
+ const RowVector3S V1 = V.row(Ele(m_primitive,0));
|
|
|
+ const RowVector3S V2 = V.row(Ele(m_primitive,1));
|
|
|
+ const RowVector3S V3 = V.row(Ele(m_primitive,2));
|
|
|
+ const RowVector3S V4 = V.row(Ele(m_primitive,3));
|
|
|
+ a1 = volume_single(V2,V4,V3,(RowVector3S)q);
|
|
|
+ a2 = volume_single(V1,V3,V4,(RowVector3S)q);
|
|
|
+ a3 = volume_single(V1,V4,V2,(RowVector3S)q);
|
|
|
+ a4 = volume_single(V1,V2,V3,(RowVector3S)q);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case 2:
|
|
|
+ {
|
|
|
+ // Barycentric coordinates
|
|
|
+ typedef Eigen::Matrix<Scalar,2,1> Vector2S;
|
|
|
+ const Vector2S V1 = V.row(Ele(m_primitive,0));
|
|
|
+ const Vector2S V2 = V.row(Ele(m_primitive,1));
|
|
|
+ const Vector2S V3 = V.row(Ele(m_primitive,2));
|
|
|
+ // Hack for now to keep templates simple. If becomes bottleneck
|
|
|
+ // consider using std::enable_if_t
|
|
|
+ const Vector2S q2 = q.head(2);
|
|
|
+ a1 = doublearea_single(V1,V2,q2);
|
|
|
+ a2 = doublearea_single(V2,V3,q2);
|
|
|
+ a3 = doublearea_single(V3,V1,q2);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ default:assert(false);
|
|
|
+ }
|
|
|
+ // Normalization is important for correcting sign
|
|
|
+ Scalar sum = a1+a2+a3+a4;
|
|
|
+ a1 /= sum;
|
|
|
+ a2 /= sum;
|
|
|
+ a3 /= sum;
|
|
|
+ a4 /= sum;
|
|
|
+ if(
|
|
|
+ a1>=-epsilon &&
|
|
|
+ a2>=-epsilon &&
|
|
|
+ a3>=-epsilon &&
|
|
|
+ a4>=-epsilon)
|
|
|
+ {
|
|
|
+ return std::vector<int>(1,m_primitive);
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ return std::vector<int>();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ std::vector<int> left = m_left->find(V,Ele,q,first);
|
|
|
+ if(first && !left.empty())
|
|
|
+ {
|
|
|
+ return left;
|
|
|
+ }
|
|
|
+ std::vector<int> right = m_right->find(V,Ele,q,first);
|
|
|
+ if(first)
|
|
|
+ {
|
|
|
+ return right;
|
|
|
+ }
|
|
|
+ left.insert(left.end(),right.begin(),right.end());
|
|
|
+ return left;
|
|
|
+}
|
|
|
+
|
|
|
+template <typename DerivedV, int DIM>
|
|
|
+inline int igl::AABB<DerivedV,DIM>::subtree_size() const
|
|
|
+{
|
|
|
+ // 1 for self
|
|
|
+ int n = 1;
|
|
|
+ int n_left = 0,n_right = 0;
|
|
|
+ if(m_left != NULL)
|
|
|
+ {
|
|
|
+ n_left = m_left->subtree_size();
|
|
|
+ }
|
|
|
+ if(m_right != NULL)
|
|
|
+ {
|
|
|
+ n_right = m_right->subtree_size();
|
|
|
+ }
|
|
|
+ n += 2*std::max(n_left,n_right);
|
|
|
+ return n;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+template <typename DerivedV, int DIM>
|
|
|
+template <typename Derivedbb_mins, typename Derivedbb_maxs>
|
|
|
+inline void igl::AABB<DerivedV,DIM>::serialize(
|
|
|
+ Eigen::PlainObjectBase<Derivedbb_mins> & bb_mins,
|
|
|
+ Eigen::PlainObjectBase<Derivedbb_maxs> & bb_maxs,
|
|
|
+ Eigen::VectorXi & elements,
|
|
|
+ const int i) const
|
|
|
+{
|
|
|
+ using namespace std;
|
|
|
+ using namespace Eigen;
|
|
|
+ // Calling for root then resize output
|
|
|
+ if(i==0)
|
|
|
+ {
|
|
|
+ const int m = subtree_size();
|
|
|
+ //cout<<"m: "<<m<<endl;
|
|
|
+ bb_mins.resize(m,DIM);
|
|
|
+ bb_maxs.resize(m,DIM);
|
|
|
+ elements.resize(m,1);
|
|
|
+ }
|
|
|
+ //cout<<i<<" ";
|
|
|
+ bb_mins.row(i) = m_box.min();
|
|
|
+ bb_maxs.row(i) = m_box.max();
|
|
|
+ elements(i) = m_primitive;
|
|
|
+ if(m_left != NULL)
|
|
|
+ {
|
|
|
+ m_left->serialize(bb_mins,bb_maxs,elements,2*i+1);
|
|
|
+ }
|
|
|
+ if(m_right != NULL)
|
|
|
+ {
|
|
|
+ m_right->serialize(bb_mins,bb_maxs,elements,2*i+2);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+template <typename DerivedV, int DIM>
|
|
|
+inline typename igl::AABB<DerivedV,DIM>::Scalar
|
|
|
+igl::AABB<DerivedV,DIM>::squared_distance(
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const Eigen::MatrixXi & Ele,
|
|
|
+ const RowVectorDIMS & p,
|
|
|
+ int & i,
|
|
|
+ RowVectorDIMS & c) const
|
|
|
+{
|
|
|
+ return squared_distance(V,Ele,p,std::numeric_limits<Scalar>::infinity(),i,c);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+template <typename DerivedV, int DIM>
|
|
|
+inline typename igl::AABB<DerivedV,DIM>::Scalar
|
|
|
+igl::AABB<DerivedV,DIM>::squared_distance(
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const Eigen::MatrixXi & Ele,
|
|
|
+ const RowVectorDIMS & p,
|
|
|
+ Scalar min_sqr_d,
|
|
|
+ int & i,
|
|
|
+ RowVectorDIMS & c) const
|
|
|
+{
|
|
|
+ using namespace Eigen;
|
|
|
+ using namespace std;
|
|
|
+ Scalar sqr_d = min_sqr_d;
|
|
|
+ //assert(DIM == 3 && "Code has only been tested for DIM == 3");
|
|
|
+ assert((Ele.cols() == 3 || Ele.cols() == 2 || Ele.cols() == 1)
|
|
|
+ && "Code has only been tested for simplex sizes 3,2,1");
|
|
|
+
|
|
|
+ assert(m_primitive==-1 || (m_left == NULL && m_right == NULL));
|
|
|
+ if(is_leaf())
|
|
|
+ {
|
|
|
+ leaf_squared_distance(V,Ele,p,sqr_d,i,c);
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ bool looked_left = false;
|
|
|
+ bool looked_right = false;
|
|
|
+ const auto & look_left = [&]()
|
|
|
+ {
|
|
|
+ int i_left;
|
|
|
+ RowVectorDIMS c_left = c;
|
|
|
+ Scalar sqr_d_left = m_left->squared_distance(V,Ele,p,sqr_d,i_left,c_left);
|
|
|
+ set_min(p,sqr_d_left,i_left,c_left,sqr_d,i,c);
|
|
|
+ looked_left = true;
|
|
|
+ };
|
|
|
+ const auto & look_right = [&]()
|
|
|
+ {
|
|
|
+ int i_right;
|
|
|
+ RowVectorDIMS c_right = c;
|
|
|
+ Scalar sqr_d_right = m_right->squared_distance(V,Ele,p,sqr_d,i_right,c_right);
|
|
|
+ set_min(p,sqr_d_right,i_right,c_right,sqr_d,i,c);
|
|
|
+ looked_right = true;
|
|
|
+ };
|
|
|
+
|
|
|
+ // must look left or right if in box
|
|
|
+ if(m_left->m_box.contains(p.transpose()))
|
|
|
+ {
|
|
|
+ look_left();
|
|
|
+ }
|
|
|
+ if(m_right->m_box.contains(p.transpose()))
|
|
|
+ {
|
|
|
+ look_right();
|
|
|
+ }
|
|
|
+ // if haven't looked left and could be less than current min, then look
|
|
|
+ Scalar left_min_sqr_d = m_left->m_box.squaredExteriorDistance(p.transpose());
|
|
|
+ Scalar right_min_sqr_d = m_right->m_box.squaredExteriorDistance(p.transpose());
|
|
|
+ if(left_min_sqr_d < right_min_sqr_d)
|
|
|
+ {
|
|
|
+ if(!looked_left && left_min_sqr_d<sqr_d)
|
|
|
+ {
|
|
|
+ look_left();
|
|
|
+ }
|
|
|
+ if( !looked_right && right_min_sqr_d<sqr_d)
|
|
|
+ {
|
|
|
+ look_right();
|
|
|
+ }
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ if( !looked_right && right_min_sqr_d<sqr_d)
|
|
|
+ {
|
|
|
+ look_right();
|
|
|
+ }
|
|
|
+ if(!looked_left && left_min_sqr_d<sqr_d)
|
|
|
+ {
|
|
|
+ look_left();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return sqr_d;
|
|
|
+}
|
|
|
+
|
|
|
+template <typename DerivedV, int DIM>
|
|
|
+template <
|
|
|
+ typename DerivedP,
|
|
|
+ typename DerivedsqrD,
|
|
|
+ typename DerivedI,
|
|
|
+ typename DerivedC>
|
|
|
+inline void igl::AABB<DerivedV,DIM>::squared_distance(
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const Eigen::MatrixXi & Ele,
|
|
|
+ const Eigen::PlainObjectBase<DerivedP> & P,
|
|
|
+ Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
|
|
|
+ Eigen::PlainObjectBase<DerivedI> & I,
|
|
|
+ Eigen::PlainObjectBase<DerivedC> & C) const
|
|
|
+{
|
|
|
+ assert(P.cols() == V.cols() && "cols in P should match dim of cols in V");
|
|
|
+ sqrD.resize(P.rows(),1);
|
|
|
+ I.resize(P.rows(),1);
|
|
|
+ C.resize(P.rows(),P.cols());
|
|
|
+ for(int p = 0;p<P.rows();p++)
|
|
|
+ {
|
|
|
+ RowVectorDIMS Pp = P.row(p), c;
|
|
|
+ int Ip;
|
|
|
+ sqrD(p) = squared_distance(V,Ele,Pp,Ip,c);
|
|
|
+ I(p) = Ip;
|
|
|
+ C.row(p).head(DIM) = c;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+template <typename DerivedV, int DIM>
|
|
|
+template <
|
|
|
+ typename Derivedother_V,
|
|
|
+ typename DerivedsqrD,
|
|
|
+ typename DerivedI,
|
|
|
+ typename DerivedC>
|
|
|
+inline void igl::AABB<DerivedV,DIM>::squared_distance(
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const Eigen::MatrixXi & Ele,
|
|
|
+ const AABB<Derivedother_V,DIM> & other,
|
|
|
+ const Eigen::PlainObjectBase<Derivedother_V> & other_V,
|
|
|
+ const Eigen::MatrixXi & other_Ele,
|
|
|
+ Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
|
|
|
+ Eigen::PlainObjectBase<DerivedI> & I,
|
|
|
+ Eigen::PlainObjectBase<DerivedC> & C) const
|
|
|
+{
|
|
|
+ assert(other_Ele.cols() == 1 &&
|
|
|
+ "Only implemented for other as list of points");
|
|
|
+ assert(other_V.cols() == V.cols() && "other must match this dimension");
|
|
|
+ sqrD.setConstant(other_Ele.rows(),1,std::numeric_limits<double>::infinity());
|
|
|
+ I.resize(other_Ele.rows(),1);
|
|
|
+ C.resize(other_Ele.rows(),other_V.cols());
|
|
|
+ // All points in other_V currently think they need to check against root of
|
|
|
+ // this. The point of using another AABB is to quickly prune chunks of
|
|
|
+ // other_V so that most points just check some subtree of this.
|
|
|
+
|
|
|
+ // This holds a conservative estimate of max(sqr_D) where sqr_D is the
|
|
|
+ // current best minimum squared distance for all points in this subtree
|
|
|
+ double min_sqr_d = std::numeric_limits<double>::infinity();
|
|
|
+ squared_distance_helper(
|
|
|
+ V,Ele,&other,other_V,other_Ele,min_sqr_d,sqrD,I,C);
|
|
|
+}
|
|
|
+
|
|
|
+template <typename DerivedV, int DIM>
|
|
|
+template <
|
|
|
+ typename Derivedother_V,
|
|
|
+ typename DerivedsqrD,
|
|
|
+ typename DerivedI,
|
|
|
+ typename DerivedC>
|
|
|
+inline typename igl::AABB<DerivedV,DIM>::Scalar igl::AABB<DerivedV,DIM>::squared_distance_helper(
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const Eigen::MatrixXi & Ele,
|
|
|
+ const AABB<Derivedother_V,DIM> * other,
|
|
|
+ const Eigen::PlainObjectBase<Derivedother_V> & other_V,
|
|
|
+ const Eigen::MatrixXi & other_Ele,
|
|
|
+ const Scalar /*min_sqr_d*/,
|
|
|
+ Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
|
|
|
+ Eigen::PlainObjectBase<DerivedI> & I,
|
|
|
+ Eigen::PlainObjectBase<DerivedC> & C) const
|
|
|
+{
|
|
|
+ using namespace std;
|
|
|
+ using namespace Eigen;
|
|
|
+
|
|
|
+ // This implementation is a bit disappointing. There's no major speed up. Any
|
|
|
+ // performance gains seem to come from accidental cache coherency and
|
|
|
+ // diminish for larger "other" (the opposite of what was intended).
|
|
|
+
|
|
|
+ // Base case
|
|
|
+ if(other->is_leaf() && this->is_leaf())
|
|
|
+ {
|
|
|
+ Scalar sqr_d = sqrD(other->m_primitive);
|
|
|
+ int i = I(other->m_primitive);
|
|
|
+ RowVectorDIMS c = C.row( other->m_primitive);
|
|
|
+ RowVectorDIMS p = other_V.row(other->m_primitive);
|
|
|
+ leaf_squared_distance(V,Ele,p,sqr_d,i,c);
|
|
|
+ sqrD( other->m_primitive) = sqr_d;
|
|
|
+ I( other->m_primitive) = i;
|
|
|
+ C.row(other->m_primitive) = c;
|
|
|
+ //cout<<"leaf: "<<sqr_d<<endl;
|
|
|
+ //other->m_max_sqr_d = sqr_d;
|
|
|
+ return sqr_d;
|
|
|
+ }
|
|
|
+
|
|
|
+ if(other->is_leaf())
|
|
|
+ {
|
|
|
+ Scalar sqr_d = sqrD(other->m_primitive);
|
|
|
+ int i = I(other->m_primitive);
|
|
|
+ RowVectorDIMS c = C.row( other->m_primitive);
|
|
|
+ RowVectorDIMS p = other_V.row(other->m_primitive);
|
|
|
+ sqr_d = squared_distance(V,Ele,p,sqr_d,i,c);
|
|
|
+ sqrD( other->m_primitive) = sqr_d;
|
|
|
+ I( other->m_primitive) = i;
|
|
|
+ C.row(other->m_primitive) = c;
|
|
|
+ //other->m_max_sqr_d = sqr_d;
|
|
|
+ return sqr_d;
|
|
|
+ }
|
|
|
+
|
|
|
+ //// Exact minimum squared distance between arbitary primitives inside this and
|
|
|
+ //// othre's bounding boxes
|
|
|
+ //const auto & min_squared_distance = [&](
|
|
|
+ // const AABB<DerivedV,DIM> * A,
|
|
|
+ // const AABB<Derivedother_V,DIM> * B)->Scalar
|
|
|
+ //{
|
|
|
+ // return A->m_box.squaredExteriorDistance(B->m_box);
|
|
|
+ //};
|
|
|
+
|
|
|
+ if(this->is_leaf())
|
|
|
+ {
|
|
|
+ //if(min_squared_distance(this,other) < other->m_max_sqr_d)
|
|
|
+ if(true)
|
|
|
+ {
|
|
|
+ this->squared_distance_helper(
|
|
|
+ V,Ele,other->m_left,other_V,other_Ele,0,sqrD,I,C);
|
|
|
+ this->squared_distance_helper(
|
|
|
+ V,Ele,other->m_right,other_V,other_Ele,0,sqrD,I,C);
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ // This is never reached...
|
|
|
+ }
|
|
|
+ //// we know other is not a leaf
|
|
|
+ //other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ // FORCE DOWN TO OTHER LEAF EVAL
|
|
|
+ //if(min_squared_distance(this,other) < other->m_max_sqr_d)
|
|
|
+ if(true)
|
|
|
+ {
|
|
|
+ if(true)
|
|
|
+ {
|
|
|
+ this->squared_distance_helper(
|
|
|
+ V,Ele,other->m_left,other_V,other_Ele,0,sqrD,I,C);
|
|
|
+ this->squared_distance_helper(
|
|
|
+ V,Ele,other->m_right,other_V,other_Ele,0,sqrD,I,C);
|
|
|
+ }else // this direction never seems to be faster
|
|
|
+ {
|
|
|
+ this->m_left->squared_distance_helper(
|
|
|
+ V,Ele,other,other_V,other_Ele,0,sqrD,I,C);
|
|
|
+ this->m_right->squared_distance_helper(
|
|
|
+ V,Ele,other,other_V,other_Ele,0,sqrD,I,C);
|
|
|
+ }
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ // this is never reached ... :-(
|
|
|
+ }
|
|
|
+ //// we know other is not a leaf
|
|
|
+ //other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+#if 0 // False
|
|
|
+
|
|
|
+ // _Very_ conservative approximation of maximum squared distance between
|
|
|
+ // primitives inside this and other's bounding boxes
|
|
|
+ const auto & max_squared_distance = [](
|
|
|
+ const AABB<DerivedV,DIM> * A,
|
|
|
+ const AABB<Derivedother_V,DIM> * B)->Scalar
|
|
|
+ {
|
|
|
+ AlignedBox<Scalar,DIM> combo = A->m_box;
|
|
|
+ combo.extend(B->m_box);
|
|
|
+ return combo.diagonal().squaredNorm();
|
|
|
+ };
|
|
|
+
|
|
|
+ //// other base-case
|
|
|
+ //if(other->is_leaf())
|
|
|
+ //{
|
|
|
+ // double sqr_d = sqrD(other->m_primitive);
|
|
|
+ // int i = I(other->m_primitive);
|
|
|
+ // RowVectorDIMS c = C.row(m_primitive);
|
|
|
+ // RowVectorDIMS p = other_V.row(m_primitive);
|
|
|
+ // leaf_squared_distance(V,Ele,p,sqr_d,i,c);
|
|
|
+ // sqrD(other->m_primitive) = sqr_d;
|
|
|
+ // I(other->m_primitive) = i;
|
|
|
+ // C.row(m_primitive) = c;
|
|
|
+ // return;
|
|
|
+ //}
|
|
|
+ std::vector<const AABB<DerivedV,DIM> * > this_list;
|
|
|
+ if(this->is_leaf())
|
|
|
+ {
|
|
|
+ this_list.push_back(this);
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ assert(this->m_left);
|
|
|
+ this_list.push_back(this->m_left);
|
|
|
+ assert(this->m_right);
|
|
|
+ this_list.push_back(this->m_right);
|
|
|
+ }
|
|
|
+ std::vector<AABB<Derivedother_V,DIM> *> other_list;
|
|
|
+ if(other->is_leaf())
|
|
|
+ {
|
|
|
+ other_list.push_back(other);
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ assert(other->m_left);
|
|
|
+ other_list.push_back(other->m_left);
|
|
|
+ assert(other->m_right);
|
|
|
+ other_list.push_back(other->m_right);
|
|
|
+ }
|
|
|
+
|
|
|
+ //const std::function<Scalar(
|
|
|
+ // const AABB<Derivedother_V,DIM> * other)
|
|
|
+ // > max_sqr_d = [&sqrD,&max_sqr_d](const AABB<Derivedother_V,DIM> * other)->Scalar
|
|
|
+ // {
|
|
|
+ // if(other->is_leaf())
|
|
|
+ // {
|
|
|
+ // return sqrD(other->m_primitive);
|
|
|
+ // }else
|
|
|
+ // {
|
|
|
+ // return std::max(max_sqr_d(other->m_left),max_sqr_d(other->m_right));
|
|
|
+ // }
|
|
|
+ // };
|
|
|
+
|
|
|
+ //// Potentially recurse on all pairs, if minimum distance is less than running
|
|
|
+ //// bound
|
|
|
+ //Eigen::Matrix<Scalar,Eigen::Dynamic,1> other_max_sqr_d =
|
|
|
+ // Eigen::Matrix<Scalar,Eigen::Dynamic,1>::Constant(other_list.size(),1,min_sqr_d);
|
|
|
+ for(size_t child = 0;child<other_list.size();child++)
|
|
|
+ {
|
|
|
+ auto other_tree = other_list[child];
|
|
|
+
|
|
|
+ Eigen::Matrix<Scalar,Eigen::Dynamic,1> this_max_sqr_d(this_list.size(),1);
|
|
|
+ for(size_t t = 0;t<this_list.size();t++)
|
|
|
+ {
|
|
|
+ const auto this_tree = this_list[t];
|
|
|
+ this_max_sqr_d(t) = max_squared_distance(this_tree,other_tree);
|
|
|
+ }
|
|
|
+ if(this_list.size() ==2 &&
|
|
|
+ ( this_max_sqr_d(0) > this_max_sqr_d(1))
|
|
|
+ )
|
|
|
+ {
|
|
|
+ std::swap(this_list[0],this_list[1]);
|
|
|
+ //std::swap(this_max_sqr_d(0),this_max_sqr_d(1));
|
|
|
+ }
|
|
|
+ const Scalar sqr_d = this_max_sqr_d.minCoeff();
|
|
|
+
|
|
|
+
|
|
|
+ for(size_t t = 0;t<this_list.size();t++)
|
|
|
+ {
|
|
|
+ const auto this_tree = this_list[t];
|
|
|
+
|
|
|
+ //const auto mm = max_sqr_d(other_tree);
|
|
|
+ //const Scalar mc = other_max_sqr_d(child);
|
|
|
+ //assert(mc == mm);
|
|
|
+ // Only look left/right in this_list if can possible decrease somebody's
|
|
|
+ // distance in this_tree.
|
|
|
+ const Scalar min_this_other = min_squared_distance(this_tree,other_tree);
|
|
|
+ if(
|
|
|
+ min_this_other < sqr_d &&
|
|
|
+ min_this_other < other_tree->m_max_sqr_d)
|
|
|
+ {
|
|
|
+ //cout<<"before: "<<other_max_sqr_d(child)<<endl;
|
|
|
+ //other_max_sqr_d(child) = std::min(
|
|
|
+ // other_max_sqr_d(child),
|
|
|
+ // this_tree->squared_distance_helper(
|
|
|
+ // V,Ele,other_tree,other_V,other_Ele,other_max_sqr_d(child),sqrD,I,C));
|
|
|
+ //cout<<"after: "<<other_max_sqr_d(child)<<endl;
|
|
|
+ this_tree->squared_distance_helper(
|
|
|
+ V,Ele,other_tree,other_V,other_Ele,0,sqrD,I,C);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ //const Scalar ret = other_max_sqr_d.maxCoeff();
|
|
|
+ //const auto mm = max_sqr_d(other);
|
|
|
+ //assert(mm == ret);
|
|
|
+ //cout<<"non-leaf: "<<ret<<endl;
|
|
|
+ //return ret;
|
|
|
+ if(!other->is_leaf())
|
|
|
+ {
|
|
|
+ other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
+template <typename DerivedV, int DIM>
|
|
|
+inline void igl::AABB<DerivedV,DIM>::leaf_squared_distance(
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const Eigen::MatrixXi & Ele,
|
|
|
+ const RowVectorDIMS & p,
|
|
|
+ Scalar & sqr_d,
|
|
|
+ int & i,
|
|
|
+ RowVectorDIMS & c) const
|
|
|
+{
|
|
|
+ using namespace Eigen;
|
|
|
+ using namespace std;
|
|
|
+ RowVectorDIMS c_candidate;
|
|
|
+ Scalar sqr_d_candidate;
|
|
|
+ igl::point_simplex_squared_distance<DIM>(
|
|
|
+ p,V,Ele,m_primitive,sqr_d_candidate,c_candidate);
|
|
|
+ set_min(p,sqr_d_candidate,m_primitive,c_candidate,sqr_d,i,c);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+template <typename DerivedV, int DIM>
|
|
|
+inline void igl::AABB<DerivedV,DIM>::set_min(
|
|
|
+ const RowVectorDIMS &
|
|
|
+#ifndef NDEBUG
|
|
|
+ p
|
|
|
+#endif
|
|
|
+ ,
|
|
|
+ const Scalar sqr_d_candidate,
|
|
|
+ const int i_candidate,
|
|
|
+ const RowVectorDIMS & c_candidate,
|
|
|
+ Scalar & sqr_d,
|
|
|
+ int & i,
|
|
|
+ RowVectorDIMS & c) const
|
|
|
+{
|
|
|
+#ifndef NDEBUG
|
|
|
+ //std::cout<<matlab_format(c_candidate,"c_candidate")<<std::endl;
|
|
|
+ const Scalar pc_norm = (p-c_candidate).squaredNorm();
|
|
|
+ const Scalar diff = fabs(sqr_d_candidate - pc_norm);
|
|
|
+ assert(diff<=1e-10 && "distance should match norm of difference");
|
|
|
+#endif
|
|
|
+ if(sqr_d_candidate < sqr_d)
|
|
|
+ {
|
|
|
+ i = i_candidate;
|
|
|
+ c = c_candidate;
|
|
|
+ sqr_d = sqr_d_candidate;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+template <typename DerivedV, int DIM>
|
|
|
+inline bool
|
|
|
+igl::AABB<DerivedV,DIM>::intersect_ray(
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const Eigen::MatrixXi & Ele,
|
|
|
+ const RowVectorDIMS & origin,
|
|
|
+ const RowVectorDIMS & dir,
|
|
|
+ std::vector<igl::Hit> & hits) const
|
|
|
+{
|
|
|
+ hits.clear();
|
|
|
+ const Scalar t0 = 0;
|
|
|
+ const Scalar t1 = std::numeric_limits<Scalar>::infinity();
|
|
|
+ {
|
|
|
+ Scalar _1,_2;
|
|
|
+ if(!ray_box_intersect(origin,dir,m_box,t0,t1,_1,_2))
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if(this->is_leaf())
|
|
|
+ {
|
|
|
+ // Actually process elements
|
|
|
+ assert((Ele.size() == 0 || Ele.cols() == 3) && "Elements should be triangles");
|
|
|
+ // Cheesecake way of hitting element
|
|
|
+ return ray_mesh_intersect(origin,dir,V,Ele.row(m_primitive),hits);
|
|
|
+ }
|
|
|
+ std::vector<igl::Hit> left_hits;
|
|
|
+ std::vector<igl::Hit> right_hits;
|
|
|
+ const bool left_ret = m_left->intersect_ray(V,Ele,origin,dir,left_hits);
|
|
|
+ const bool right_ret = m_right->intersect_ray(V,Ele,origin,dir,right_hits);
|
|
|
+ hits.insert(hits.end(),left_hits.begin(),left_hits.end());
|
|
|
+ hits.insert(hits.end(),right_hits.begin(),right_hits.end());
|
|
|
+ return left_ret || right_ret;
|
|
|
+}
|
|
|
+
|
|
|
+template <typename DerivedV, int DIM>
|
|
|
+inline bool
|
|
|
+igl::AABB<DerivedV,DIM>::intersect_ray(
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const Eigen::MatrixXi & Ele,
|
|
|
+ const RowVectorDIMS & origin,
|
|
|
+ const RowVectorDIMS & dir,
|
|
|
+ igl::Hit & hit) const
|
|
|
+{
|
|
|
+#if false
|
|
|
+ // BFS
|
|
|
+ std::queue<const AABB *> Q;
|
|
|
+ // Or DFS
|
|
|
+ //std::stack<const AABB *> Q;
|
|
|
+ Q.push(this);
|
|
|
+ bool any_hit = false;
|
|
|
+ hit.t = std::numeric_limits<Scalar>::infinity();
|
|
|
+ while(!Q.empty())
|
|
|
+ {
|
|
|
+ const AABB * tree = Q.front();
|
|
|
+ //const AABB * tree = Q.top();
|
|
|
+ Q.pop();
|
|
|
+ {
|
|
|
+ Scalar _1,_2;
|
|
|
+ if(!ray_box_intersect(
|
|
|
+ origin,dir,tree->m_box,Scalar(0),Scalar(hit.t),_1,_2))
|
|
|
+ {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if(tree->is_leaf())
|
|
|
+ {
|
|
|
+ // Actually process elements
|
|
|
+ assert((Ele.size() == 0 || Ele.cols() == 3) && "Elements should be triangles");
|
|
|
+ igl::Hit leaf_hit;
|
|
|
+ if(
|
|
|
+ ray_mesh_intersect(origin,dir,V,Ele.row(tree->m_primitive),leaf_hit)&&
|
|
|
+ leaf_hit.t < hit.t)
|
|
|
+ {
|
|
|
+ hit = leaf_hit;
|
|
|
+ }
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ // Add children to queue
|
|
|
+ Q.push(tree->m_left);
|
|
|
+ Q.push(tree->m_right);
|
|
|
+ }
|
|
|
+ return any_hit;
|
|
|
+#else
|
|
|
+ // DFS
|
|
|
+ return intersect_ray(
|
|
|
+ V,Ele,origin,dir,std::numeric_limits<Scalar>::infinity(),hit);
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
+template <typename DerivedV, int DIM>
|
|
|
+inline bool
|
|
|
+igl::AABB<DerivedV,DIM>::intersect_ray(
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const Eigen::MatrixXi & Ele,
|
|
|
+ const RowVectorDIMS & origin,
|
|
|
+ const RowVectorDIMS & dir,
|
|
|
+ const Scalar _min_t,
|
|
|
+ igl::Hit & hit) const
|
|
|
+{
|
|
|
+ //// Naive, slow
|
|
|
+ //std::vector<igl::Hit> hits;
|
|
|
+ //intersect_ray(V,Ele,origin,dir,hits);
|
|
|
+ //if(hits.size() > 0)
|
|
|
+ //{
|
|
|
+ // hit = hits.front();
|
|
|
+ // return true;
|
|
|
+ //}else
|
|
|
+ //{
|
|
|
+ // return false;
|
|
|
+ //}
|
|
|
+ Scalar min_t = _min_t;
|
|
|
+ const Scalar t0 = 0;
|
|
|
+ {
|
|
|
+ Scalar _1,_2;
|
|
|
+ if(!ray_box_intersect(origin,dir,m_box,t0,min_t,_1,_2))
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if(this->is_leaf())
|
|
|
+ {
|
|
|
+ // Actually process elements
|
|
|
+ assert((Ele.size() == 0 || Ele.cols() == 3) && "Elements should be triangles");
|
|
|
+ // Cheesecake way of hitting element
|
|
|
+ return ray_mesh_intersect(origin,dir,V,Ele.row(m_primitive),hit);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Doesn't seem like smartly choosing left before/after right makes a
|
|
|
+ // differnce
|
|
|
+ igl::Hit left_hit;
|
|
|
+ igl::Hit right_hit;
|
|
|
+ bool left_ret = m_left->intersect_ray(V,Ele,origin,dir,min_t,left_hit);
|
|
|
+ if(left_ret && left_hit.t<min_t)
|
|
|
+ {
|
|
|
+ // It's scary that this line doesn't seem to matter....
|
|
|
+ min_t = left_hit.t;
|
|
|
+ hit = left_hit;
|
|
|
+ left_ret = true;
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ left_ret = false;
|
|
|
+ }
|
|
|
+ bool right_ret = m_right->intersect_ray(V,Ele,origin,dir,min_t,right_hit);
|
|
|
+ if(right_ret && right_hit.t<min_t)
|
|
|
+ {
|
|
|
+ min_t = right_hit.t;
|
|
|
+ hit = right_hit;
|
|
|
+ right_ret = true;
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ right_ret = false;
|
|
|
+ }
|
|
|
+ return left_ret || right_ret;
|
|
|
+}
|
|
|
+
|
|
|
+#ifdef IGL_STATIC_LIBRARY
|
|
|
+// Explicit template specialization
|
|
|
+template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::init(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&);
|
|
|
+template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::init(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&);
|
|
|
+template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&) const;
|
|
|
+template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&) const;
|
|
|
+//template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::Matrix<double, 1, 3, 1, 1, 3> const&, int&, Eigen::Matrix<double, 1, 3, 1, 1, 3>&) const;
|
|
|
+//template igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::Matrix<double, 1, 3, 1, 1, 3> const&, int&;
|
|
|
+template double igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::Matrix<double, 1, 3, 1, 1, 3> const&, int&, Eigen::Matrix<double, 1, 3, 1, 1, 3>&) const;
|
|
|
+template double igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::squared_distance(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::Matrix<double, 1, 2, 1, 1, 2> const&, int&, Eigen::Matrix<double, 1, 2, 1, 1, 2>&) const;
|
|
|
+template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&) const;
|
|
|
+template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&) const;
|
|
|
+
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+
|